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Knowledge of species’ geographic distributions is critical 
for understanding and forecasting population dynamics, 
responses to environmental change, biodiversity patterns and 
the impacts of conservation plans. Using distribution data is 
challenging, however, because distributions reflect the com-
bined result of many processes – e.g. demography, dispersal, 
biotic interactions, behavior, historical biogeography – that 
interact to produce observed spatial and temporal patterns. 
Most geographic distribution information derives from 
occurrence data (presences and sometimes absences), rather 
than on information describing specific ecological processes. 
This lack of direct information about processes has strongly 
limited our ability to build and validate mechanistic models 

that would allow us to better understand and predict popu-
lation responses to environmental change (but see, Morin 
et al. 2008, Morin and Thuiller 2009).

Demographic processes such as survival, ontogenetic 
growth, and reproduction are the biological foundation of dis-
tributional patterns and combine to define the Hutchinsonian 
niche (Pulliam 2000, Holt 2009, Pagel and Schurr 2012), i.e. 
the set of conditions where population growth is nonnegative 
in the absence of immigration. Here, we describe methods to 
build environmentally dependent demographic distribution 
models (DDMs) using an integral projection modeling (IPM) 
approach, with relatively sparse demographic data. Modeling 
these demographic processes directly facilitates mechanistic 
explanations and predictions of species’ distributions and 
range-wide population dynamics, while clarifying the roles of 
important environmental factors. We use this approach to infer 
the demographic processes that restrict population growth at 
range margins and assess how population dynamics across the 
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Knowledge of species’ geographic distributions is critical for understanding and forecasting population dynamics, responses 
to environmental change, biodiversity patterns, and conservation planning. While many suggestive correlative occurrence 
models have been used to these ends, progress lies in understanding the underlying population biology that generates  
patterns of range dynamics. Here, we show how to use a limited quantity of demographic data to produce demographic  
distribution models (DDMs) using integral projection models for size-structured populations. By modeling survival, 
growth, and fecundity using regression, integral projection models can interpolate across missing size data and environ-
mental conditions to compensate for limited data. To accommodate the uncertainty associated with limited data and 
model assumptions, we use Bayesian models to propagate uncertainty through all stages of model development to predic-
tions. DDMs have a number of strengths: 1) DDMs allow a mechanistic understanding of spatial occurrence patterns; 
2) DDMs can predict spatial and temporal variation in local population dynamics; 3) DDMs can facilitate extrapolation 
under altered environmental conditions because one can evaluate the consequences for individual vital rates. To illustrate 
these features, we construct DDMs for an overstory perennial shrub in the Proteaceae family in the Cape Floristic Region 
of South Africa. We find that the species’ population growth rate is limited most strongly by adult survival throughout the 
range and by individual growth in higher rainfall regions. While the models predict higher population growth rates in the 
core of the range under projected climates for 2050, they also suggest that the species faces a threat along arid range margins 
from the interaction of more frequent fire and drying climate. The results (and uncertainties) are helpful for prioritizing 
additional sampling of particular demographic parameters along these gradients to iteratively refine projections. In the 
appendices, we provide fully functional R code to perform all analyses.
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species’ range will respond to potential environmental change. 
The reason such ‘mechanistic niche models’ have not been 
generally developed is that they have proven too difficult to 
parameterize – directly surveying multiple demographic pro-
cesses across the entire range of a species would require pro-
hibitive effort (Holt 2009). While this IPM approach would 
work best with large, spatially extensive data sets, it can still 
provide useful insights when data for different life stages are 
imperfect and spatially and temporally mismatched.

Use of demographic information to model species’ distri-
butions necessarily involves simplifications of the underlying 
demographic processes. For example, some studies have been 
successful in relating measurements of individuals or popula-
tions to environmental factors and using these relationships 
to project the potential distribution of the species (Crozier 
and Dwyer 2006, Kearney and Porter 2009, Chapman et al. 
2014). When a single easily measurable environmental factor 
has a strong and consistent effect on a sensitive demographic 
rate – like lethal temperature for mollusks (Helmuth et  al. 
2006) or development temperature for butterflies (Buckley 
et al. 2011) – this approach can set biologically based limits 
on species occurrence. However, the processes modeled in 
such physiologically based studies do not explicitly consider 
the demographic pathway through which these abiotic mech-
anisms affect individual performance. Such models may omit 
the complexities of tradeoffs in resource allocation manifested 
in survival, growth, and reproduction that are necessary for 
persistence across different environments. To capture these 
demographic effects, we need to work on scaling up measure-
ments of individual performance to demographic rates and 
consequently population dynamics (Clark et al. 2011).

Previous attempts to understand range-wide demographic 
responses can be categorized as those with either 1) more 
detailed models that require a large amount of individual-
level data and are computationally challenging to project 
over large areas or many species or 2) less detailed models 
that are feasible to study at landscape scales (see review and 
references in Snell et al. 2014). The first approach is repre-
sented by forest gap models (Kohyama 1992, reviewed by 
Bugmann 2001) and state space models (Clark et al. 2010), 
which simulate individual-level demography based on abi-
otic and biotic conditions, typically at stand scales. A variety 
of models exemplify the second, landscape-level approach. 
Perhaps the least data-intensive approach is to couple  
species distribution models with local population projection 
models (Keith et  al. 2008), however such models rely on 
strong assumptions about the relationship between occur-
rence probability and demographic rates that are difficult 
to evaluate. Upscaled forest gap models, such as TreeMig 
(Lischke et  al. 2006), include biotic interactions, dispersal 
and describe demographic responses to climate across large 
spatial extents, but require simulation and large amounts of 
data. As another example, Vanderwel et  al. (2013) models 
demographic rates of functional groups of eastern North 
American trees as a function of climate and projects popula-
tion dynamics using cohort-based simulations to gain the 
flexibility to model range wide population predictions. This 
approach has the greatest similarity to the models presented 
here, with the exception that our models include heterogene-
ity among individuals within a cohort. Our framework repre-
sents a compromise between these approaches, in that IPMs 

capture some aspects of individual-level demographic varia-
tion (size-structure) and explicit response to climate using 
relatively simple size-structured models and require fewer 
data than individual-based modeling approaches. IPMs use 
individual state variables at higher resolution than most other 
approaches and have a number of associated analytic tools 
(see below). This simplicity provides a computationally effi-
cient framework, which facilitates Bayesian uncertainty anal-
yses and enables landscape scale predictions. Ultimately, the 
choice of approach should depend on available data and suf-
ficient modeling detail to capture spatial patterns of interest.

Scaling up from individual responses to demographic rates 
presents major challenges. Crone et  al. (2013) have shown 
that population projection models have often proven to be 
poor predictors of species dynamics over time or space, in part 
because they fail to capture how spatio-temporal environmen-
tal variation affects demographic parameters. To make DDMs 
more reliable, we need ways to: 1) reduce the quantity of data 
needed to parameterize them; 2) synthesize disparate demo-
graphic data to parameterize and use models of population 
dynamics; and 3) utilize demographic data from contrasting 
environments across the species’ ranges. In this paper, we argue 
that IPMs can help achieve these goals, based on their reliance 
on regression models, and present a detailed case study using 
these methods to build a DDM for the South African shrub 
species Protea repens (the common sugarbush).

Despite the challenges involved, there are important 
reasons to work toward these goals of applying DDMs 
to species’ distributions: 1) they aid in understanding the 
mechanisms driving distributional patterns; 2) they can 
predict spatial and temporal variation in local popula-
tion statistics such as population growth rate, sensitivities/ 
elasticities, stage passage times (e.g. to reproduction); 3) they 
can improve our ability to project population-level patterns to 
new locations or environmental conditions (cf. Huntley et al. 
2010, Schurr et al. 2012b, Crone et al. 2013). Taken together, 
these advantages also allow us to bridge multiple biological 
scales: intraspecific trait variation, life history strategies, local 
population dynamics, landscape scale population dynamics, 
and range dynamics. Landscape ecologists and biogeogra-
phers generally focus on the population-level patterns at larger 
geographic extents, but currently do not have an accessible 
means of benefiting from the insights of population biol-
ogy. By scaling demographic processes from the individual to 
regional level, biologists can check that their understanding 
and model predictions match observed patterns at each level 
of biological organization, leading to greater confidence about 
inference and projection. When the processes in the model 
fail to explain major patterns at a particular scale, we can focus 
research on measuring demographic transitions identified as 
the most critical for driving patterns at that scale.

Integral projection models (IPMs; Easterling et al. 2000) 
are size-structured demographic models. Unlike population  
projection models derived from stage-based matrices  
(cf. Caswell 2001), IPMs use regression models to relate con-
tinuous state variables, such as individual size, to explanatory 
covariates, such as environmental conditions, to predict vital 
rates (Table 1; Easterling et al. 2000, Ellner and Rees 2006, 
Merow et al. 2014). For example, we used logistic regression  
to relate individual survival to individual size, winter  
temperature, and mean annual precipitation. Typically, 
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models, one can construct IPM kernels and therefore  
predict population dynamics at new locations, so long as  
the values of the environmental covariates are known for 
those locations. The critical step for building DDMs is thus 
not the use of IPMs per se (i.e. continuously varying state 
variables), but the regression of demographic parameters 
along environmental gradients. Unstructured population 
models, matrix projection models or individual-based mod-
els could also employ regression of their relevant parameters 
on environmental covariates to project population dynamics 
across a landscape, although this is not common (but see 
Doak and Morris 2010, Vanderwel et al. 2013).

We used Bayesian regressions models and focus here on 
their value for handling missing or sparse data while account-
ing for uncertainty in model predictions (Clark 2005), which 
is rarely quantified in population projection models (Crone 
et al. 2013). Though many biologists have valuable demo-
graphic data for their study organisms, some aspects of size 
structure, life history or environmental response are often 
poorly measured or exhibit inexplicable variability. Such 
data gaps make demographic modeling challenging and 
limit inference on population biology. Nonetheless, building 
models with incomplete data sets or, perhaps relying in part 
on complementary expert knowledge, can give new insights 
into environmental responses (Cabral et  al. 2013, Crone 
et  al. 2013) while highlighting priorities for further data 
collection. Accurately describing the uncertainty that results 
from incomplete data, a key strength of Bayesian model-
ing (Clark and Bjørnstad 2004), is crucial for determining 
whether predictions depend heavily on assumptions rather 
than data, and to what extent the data narrow the range of 
feasible predictions. With large data sets that cover the entire 
life history and the species’ distribution, Bayesian IPMs can 
be used to project population dynamics across a species’ 
range. With sparser data sets from fewer populations, we can 
still use these models to describe the studied populations and 
extract qualitative insights about range dynamics, generate 
mechanistic hypotheses about their drivers, and target future 
data collection by identifying the critical or least understood 
stages/sizes.

As a case study for the use of DDMs, we build models 
for Protea repens, a common, often abundant, and widely 
distributed overstory shrub of the Mediterranean climate, 
fynbos shrubland biome in the Cape Floristic Region (CFR) 
of South Africa. Proteaceae in the CFR are an example of an 
iconic, biodiverse suite of species and have been projected 
to be vulnerable to climate change (Midgley et  al. 2003, 
Schurr et al. 2012a, Cabral et al. 2013). The fynbos is a fire 
prone system with median fire return times typically ranging 
from 10 to 21 yr (van Wilgen et al. 2010). On average across 
the region, fire frequency has decreased by about four years 
over the past three decades, due in part to changing climate 
(Wilson et al. 2010). Thus dynamic models are critical for 
understanding species’ response to environmental change 
in this system, above and beyond existing static, correlative  
species distribution models (Midgley et al. 2003, Keith et al. 
2008, Franklin 2010, Cabral et al. 2013).

Understanding the factors that control the distribution 
and abundance of Proteas represents a fairly common and 
important type of modeling challenge. To manage fynbos 
ecosystems for resilience, it is important to understand 

Table 1. Regression coefficients for all vital rate models. Environ-
mental predictors have been standardized. Columns correspond  
to posterior mean parameter values and lower (upper) 95 percent 
credible interval bounds. Models were chosen by backward stepwise 
DIC selection described in Supplementary material Appendix A.

Mean Lower-95% 
CI

Upper-95% 
CI

Seedling survival probability
Intercept  2.597  3.680  1.376
Size 4.744 2.807 6.357
Minimum July temperature  0.362  0.603  0.101
Mean annual precipitation 0.188 0.014 0.363

Adult survival probability
Intercept 3.406 2.782 4.010
Size  0.695  0.889  0.491
Minimum July temperature 0.154  0.034 0.327
Mean annual precipitation 0.608 0.414 0.846

Growth
Intercept 0.182 0.167 0.198
% High fertility soil  0.030  0.051  0.013
% High fertility soil2 0.056 0.018 0.085
Winter soil moisture days 0.036 0.015 0.053
Winter soil moisture days2  0.015  0.024  0.005
% Acidic soil  0.002  0.009 0.007
% Acidic soil2  0.035  0.051  0.019
Minimum July temperature 0.018 0.011 0.026
Summer soil moisture days  0.003  0.012 0.006
Summer soil moisture days2  0.030  0.037  0.022

Flowering probability
Intercept  2.629  3.755  1.503
Size 3.627 2.583 4.584

Seedheads/individual
Intercept 1.495 1.211 1.824
Size 0.622 0.466 0.788
Minimum July temperature  0.272  0.401  0.156
% Acidic soil 0.347 0.163 0.540
% Acidic soil2  0.428  0.652  0.236

Seeds/seedhead
Intercept 4.156 4.075 4.241

Germination probability
Intercept 0.010 0.009 0.012

Offspring size
Intercept 0.163 0.137 0.193
% Acidic soil  0.020  0.035  0.002
% High fertility soil  0.054  0.091  0.019
% High fertility soil2 0.065 0.012 0.117
Minimum July temperature 0.041 0.024 0.056
Summer soil moisture days  0.001  0.012 0.011
Summer soil moisture days2  0.035  0.051  0.020

observations of vital rates for some sizes or environments 
will be unavailable. Regressions allow IPMs to bridge  
these missing values through interpolating and extrapolat-
ing the fitted regression function. IPMs can then be used to 
evaluate the implications of those projections. For example, 
in the survival model mentioned above, one can predict the 
survival probability for any combination of plant size, winter 
temperature, and mean annual precipitation, whether or not 
the particular combination has been observed. Such projec-
tions mean that robust inference depends on ensuring that 
regressions make sensible predictions when extrapolating (at 
least qualitatively).

DDMs rely on predictions from the vital rate regressions  
across a landscape where spatially extensive data are available 
on the environmental covariates. From predicted vital rate  
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number of seedheads/individual, fseedhead(z,x), number of 
seeds/seedhead, fseed, recruitment probability, precruit, and the 
offspring size distribution frecruit size(z′,x), as,

F(z′|z,x)  pflower(z) fseedhead(z,x) fseed precruit frecruit size(z′,x)� (3)

Each of the vital rate functions is then estimated through 
a regression on the state variable, size, and environmental  
covariates, as appropriate (Table 1). Although the state  
variable and environmental covariates enter the vital rate 
regressions in the same way, they are used differently in  
the IPM. A single value for each environmental covariate, 
corresponding to the location that the IPM represents, must 
be supplied in order to build the IPM kernel. In the model, 
all individuals in a location ‘experience’ the same values of 
the environmental covariates. In contrast, the state variable 
differs among individuals within a population during ontog-
eny. The details of each regression are described below.

Data collection

When fires occur in fynbos shrubland, virtually all P. repens 
adults in burned areas are killed, as they lack the capacity 
to resprout (Rebelo 2001). Their seeds are stored in sero-
tinous seedheads (cones) that open after fire, and seedlings 
recruit exclusively in the autumn following fire (Holmes 
and Newton 2004). This fire-driven life history presents 
sampling challenges, because data on recruitment rates can 
be collected only in areas that have recently burned, while 
information on growth rates, adult mortality and fecundity 
can be collected only in areas that have not recently burned. 
In our sampling campaign, we sampled 121 sites (38 for 
growth and 27 of those for fecundity, 63 for mortality, 
and 20 for seedling recruitment) across the geographic and  
environmental range of the species (Fig. 1). At growth sites, 
we measured the length of the central stem of 15 randomly 
selected plants along a transect across the population. Given 
the time since the populations last burned (estimated in the 
field and validated with data from CapeNature fire records; 
Wilson et al. 2010), we calculated average annual growth for 
each individual as stem length divided by plant age. Stem 
length ranged from 0.03 to 4.4 m. Plant height is approxi-
mately 86% of total stem length due to branching architec-
ture. Because P. repens typically adds one internode segment 
to the central stem each year, we took the length of the basal 
internode segment as a measure of offspring size.

At 27 of the 38 plots where growth was measured, the 
number of seedheads was counted for each individual. For 
two plants at each location, we collected three seedheads 
from each of the last three years of production (when avail-
able) and counted the number of seeds in each. We assumed 
that seeds on reproductive adults become capable of produc-
ing recruits in the year following production, and remain 
viable for two years, so that the aerial seed bank includes up 
to three crops of seeds (Musil 1991). At the mortality sites, 
we surveyed four randomly located areas of approximately 
100 m2 each (except where populations were too small), 
in which we counted the number of live and dead plants. 
Plants that had died within the previous year were easily 
identified as those with brown leaves remaining on the stem, 

demographic vulnerabilities and their variation during 
ontogeny to make fire management decisions that avoid 
bottlenecks for population growth. Furthermore, mapping 
demographic patterns is critical to provide spatially explicit, 
reserve-specific management advice (e.g. on the conse-
quences of different fire return times for population growth, 
cf. Fig. 4a, b). There are strong environmental gradients 
in the region so it is vital that these conservation decisions  
explicitly account for population responses to different  
environments (Thuiller et  al. 2006, Latimer et  al. 2009, 
Wilson and Silander 2013).

In this paper, we describe data collection, fitting, and 
projection for environmentally dependent IPMs, and  
demonstrate how these can be used to predict a variety of 
demographic attributes of species’ geographic distributions. 
We illustrate models built from demographic data col-
lected during a single visit to each of 121 populations that 
cover a wide range of environmental variation but do not 
span the entire range of the species. We demonstrate that 
these models can produce insights about population growth 
rates, sensitivities, and conservation-relevant metrics such 
as the probability of persistence across a species’ range. In 
the appendices, we provide fully functional R code (R Core 
Team) to perform all analyses that can be readily adapted for 
other data sets.

Methods

Integral projection models

To illustrate the attributes of IPMs that facilitate modeling 
range dynamics, we present a very brief introduction to their 
construction and refer readers to reviews in Ellner and Rees 
(2006), Coulson (2012) and Merow et al. (2014) for further 
details. As is typical in IPMs, we use individual size as the 
state variable, here measured as the total length along the 
central stem. Demographic transitions (survival, growth and 
fecundity) are described by the kernel function, K(z′|z,x), 
where z′ denotes the size at time t  1, z denotes the size 
at time t, and x is a vector of environmental covariates at a 
particular location. Projecting the size distribution of indi-
viduals in the population at t, given by nt(z), to t  1, given 
by nt  1(z′  ), is performed by:

nt  1(z′  )  ∫W K(z′|z,x) nt(z) dz� (1)

where W denotes the set of all possible sizes. The kernel can 
be decomposed into a growth/survival subkernel, P(z′|z,x), 
and a fecundity subkernel, F(z′|z,x), as K(z′|z,x)  P(z′|z,x) 
 F(z′|z,x). The subkernels F(z′|z,x) and P(z′|z,x) can be 
further decomposed into functions specific to the species’ 
life history and which can be estimated from regression. For 
example, here we write

P(z′|z,x)  s(z,x) g(z′|z,x)� (2)

where s(z) is the probability of survival as a function of  
individual size and g(z′|z,x) is the probability of growing  
from size z to size z′ during one time step. We similarly 
decompose fecundity into flowering probability, pflower(z), 
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Figure 1. Sampling locations for demographic data (a–d) and the candidate environmental covariates at 1-minute resolution (1.55  1.85 
km) used in vital rate regressions (e–k). The Cape Floristic Region is bordered by the Atlantic and Indian Oceans to the west and south 
(respectively) and the Great Karoo Desert to the north.

enabling us to capture mortality over a single year (cf. Kobe 
et  al 1995). At the seedling recruitment sites, we counted 
the number of dead parent plants and live seedlings in a  
2 m wide belt transect across the population. The data  
were collected in short field visits during 2008–2011, in late 
summer to early fall, after conclusion of the summer estab-
lishment and growth period following preceding fires. Note 
that size was not measured with the mortality or parent– 
seedling ratio data.

Occurrence and abundance data across the region were 
used to assess model predictions. The Protea Atlas database 
derives from a major citizen science initiative to record occur-
rence and ordinal abundance data (0, 1–10, 100, 1000 indi-
viduals) for all ∼330 Proteaceae species throughout the Cape 
Floristic Region (Goldblatt and Manning 2002) and con-
tains more than 250 000 species records over ∼90 000 km2 
(Rebelo 2002). The Protea Atlas data represent community 
surveys of Proteaceae for an area with diameter up to 500 m. 
We aligned these surveys with the 1′ square grid imposed on 
the landscape by the resolution of our environmental data 
(described below) and summarized the data to determine 
abundance, presence, and absence, while minimizing the 
potentially false absences due to incomplete sampling of a 
grid cell (Fig. 1; details in Supplementary material Appendix 
A). We used these data (3985 presences and 2338 absences 
for P. repens) to evaluate predictions of population growth 
rate (l), assuming that presence (absence) locations should 

have l  1 ( 1). We expected that observed abundance 
should have positive correlation with l (see Discussion).

Environmental data were summarized at 1′  1′ (1.55  
1.85 km) resolution and include both climatic factors (aver-
aged from 1950–2000) and edaphic factors that have proven 
useful for explaining occurrence patterns in the fynbos 
(Richards et al. 1997, Schulze 1997, Latimer et al. 2006). 
After removing predictors with correlation higher than 0.5, 
we were left with the following: minimum July temperature, 
number of summer soil moisture days (summer SMD; the 
number of summer days above a soil moisture threshold; 
Supplementary material Appendix A), number of winter 
soil moisture days (winter SMD), proportion acidic soil, 
and proportion high fertility soil (Fig. 1; Supplementary 
material Appendix A). Mean fire return times for each pixel 
were estimated using a survival model between observed 
fire return times derived from satellite and field data over 
1980–2010 (Wilson et al. 2010, de Klerk et al. 2012) and 
satellite-derived post-fire ecosystem recovery trajectories 
(Supplementary material Appendix B).

Regression models

The regressions between the various vital rates (survival, 
growth, and fecundity; Table 1) and the environmental data 
were all fit in a Bayesian framework and 1000 posterior 
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gradients in these components contribute to overall recruit-
ment rates hence we use a constant recruitment probability 
for all locations.

Finally, we predicted the distribution of seedling sizes  
(frecruit size(z′ ) in Eq. (3)). We regressed the length of the first 
stem segment (P. repens typically adds one segment per year) 
on environmental covariates using linear regression, assum-
ing normal residuals. The variance of the residuals was taken 
as the predicted variance of seedling sizes.

Survival
Our survival models similarly provide an illustration of how 
Bayesian IPMs can employ sparse data. To estimate survival 
probability across all sizes (s(z) in Eq. (2)), we used two 
complementary data sets that related to different life stages. 
The first consisted of mortality plots, in which the number 
of living and dead adults/juveniles were recorded, and the 
second consisted of parent-seedling ratios from recently 
burned (1–5 yr) populations. Because the size of these indi-
viduals was not recorded, we imputed the size of individuals 
in both data sets using our fitted regressions for the initial 
size of seedlings and their subsequent growth. Parent size was 
predicted in the year before mortality using the time since 
fire and the predicted average interannual growth from the 
growth model above (i.e. offspring size  (time since fire – 
1)  (average interannual growth)). An analogous procedure 
for predicting seedling mortality from parent-seedling data, 
which also involved predicting parent sizes, the number of 
seeds, recruitment, and offspring size is described in detail 
in Supplementary material Appendix A. Using a Bayesian 
framework made it easier to incorporate uncertainty into 
the model, since within the model, we could sequentially 
predict each unobserved quantity from the fitted regressions 
above. We propagated parameter uncertainty from the mod-
els for growth, fecundity and seedling initial size by making 
100 random draws from the posterior distribution of those 
regression coefficients, then refitting the survival models for 
each set of coefficients. These imputed sizes, along with envi-
ronmental covariates, were used as predictors in a logistic 
regression, using a binary survival response.

In spite of the many assumptions associated with this 
model, the limited available empirical information is broadly 
consistent with our estimation. In a field experiment involv-
ing broad scale transplantation of seeds and seedlings of four 
Protea species with similar life history and seed traits, the 
median first year survival rate was 0.12 (Latimer et al. 2009). 
Our model predicts median (95% CI) seedlings survival 
across the entire region of 16.5% (13.3%, 34.2%) in their 
first year after establishment.

Predicting vital rates
A number of demographically informative quantities and 
maps can be calculated directly from the vital rate regres-
sions. For example, we mapped the predicted value of each 
vital rate (for individuals of a particular size) across the land-
scape to look for similarities and differences in their response 
to environment (Fig. 2). We mapped the time until 90% of 
individuals in a cell become reproductive, a quantity used 
in fynbos management to determine optimal timing of  
controlled burns (de Klerk et  al. 2007). To do this, we 
used the flowering probability model to predict the size at 

samples of the regression coefficients were saved in order 
to propagate the uncertainties from this step through the 
population projections (explained below). Posterior samples 
were thinned appropriately after an initial burn in period 
to remove autocorrelation in the MCMC chains. Regression 
models were built using MCMCglmm (Hadfield 2010), 
JAGS (Plummer 2003) and MCMCpack (Martin et  al. 
2011) in R ver. 3.0.2 (R Core Team).

Growth
We modeled average interannual growth using linear  
regression assuming normal residuals. This average growth 
increment was added to the size at time t to predict the size at 
time t  1 (providing g(z′|z,x) in Eq. 2). This model assumes 
that length of the central stem is a linear function of time 
since fire. This approximation is feasible for interfire inter-
vals we consider, producing individuals approximately 3 m 
tall after 25 yr (a long interval), which is consistent with the 
sizes we observed in the field (estimate obtained from growth 
model intercept (0.182)  25 yr fire interval  correlation 
between central stem length and plant height (0.86)). While 
smoothing growth in this way reduces temporal resolution, 
it allows us to avoid remeasuring individuals each year, while 
providing a more stable estimate of individual growth rates 
for comparisons among sites along environmental gradients.  
The variance of the residuals was taken as the predicted  
variance in annual growth.

Fecundity
The transition from adult in the year of fire to seedling in  
the year following fire is challenging to parameterize because 
this transition includes several processes operating in turn: 
flowering, seed production, recruitment, and first-year sur-
vival and growth. While potentially limiting our ability to 
make robust predictions, this challenge gives an opportunity 
to evaluate how well we can do even when some demographic 
transitions are difficult to observe and data are sparse.

Flowering probability (pflower(z) in Eq. (3)) was modeled 
using logistic regression with an indicator for flowering as 
the response variable and size as a predictor. Too few observa-
tions were available to determine environmental dependence 
of flowering probability. We modeled the total number of 
seedheads per plant ( f seedhead(z) in Eq. (3)) using a Poisson 
regression with size and environmental covariates as pre-
dictors. From field collection of seedheads we obtained an  
estimate of seeds per mature seedhead using Poisson regression 
(fseed in Eq. (3)).

To estimate effective recruitment rates ( precruit in Eq. (3)), 
we used parent-seedling ratio data at the three available sites 
that were surveyed in the year immediately after fire. Using 
the seedhead model, the number of observed parents, and 
their estimated sizes based on the growth model ( g(z′|z,x) 
above), we predicted the total number of seeds. By dividing 
the observed number of seedlings by the predicted number 
of seeds, we estimated the effective recruitment probability. 
The posterior distribution of recruitment probability incor-
porated uncertainty in predicted parent size and, conditional 
on parent size, the number of seeds produced, by sampling 
parameters from the posterior distributions of the growth 
and seedhead models to be used in the prediction. Data were 
not available to identify how variation along environmental 
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Figure 2. Maps of predicted vital rates. (a) Survival probability of 0.1 m individuals; (b) survival probability of 3 m individuals; (c) mean 
annual growth increment; (d) number of seedheads for 3 m individuals; (e) offspring size; (f ) time until 90% probability of flowering.

which there is a 90% chance of flowering, and then used the  
seedling size distribution model, in conjunction with the 
growth model, to predict the amount of time needed to 
reach this size (i.e. time  [(90% flowering size – offspring 
size)/interannual growth]  1).

Population inference

Population growth rate
The vital rate regressions were combined to build growth/
survival and fecundity subkernels according to Eq. (2–3).  
We predicted asymptotic population growth rates based on 
the mean fire return time using an annual periodic projection 
model (cf. Caswell 2001). Protea repens very rarely recruits in 
non-fire years and it does not survive most fires, so a genera-
tion corresponds to one fire interval. For a cell with a given 
set of environmental covariates and mean fire interval, we 
combined the appropriate number of cell-specific growth/
survival subkernels (the same for each non-fire year) with a  
single fecundity subkernel (fire year). Integration was per-
formed using the midpoint rule by discretizing the subkernels 
at 100  100 cell resolution (Easterling et al. 2000). Eigen-
analyses were used to extract population growth rates and 
associated sensitivities/elasticities (Easterling et al. 2000) for 

different combinations of environmental variables and fire 
regimes. For example, for an 18-yr fire interval, 17 growth/
survival subkernels were combined with a single fecundity 
subkernel to describe the dynamics during a single genera-
tion. For simplicity, the dominant eigenvalue, correspond-
ing to the asymptotic population growth rate, was converted  
to an annual scale (the periodic model describes growth 
among generations) by raising it to the power of 1/(fire 
return time). This conversion enabled us to compare growth 
in cells with different expected fire return times on the same 
scale.

A number of informative statistics related to l are read-
ily calculated from our models. By examining locations 
where l  1, based on the observed fire regimes, we can 
characterize the Hutchinsonian niche. By mapping l, we 
can predict the species’ range. The accuracy of these predic-
tions can be assessed using presence/absence and abundance 
data that were independently collected. We calculated the 
percentage of 2338 presence and 3985 absences correctly 
predicted based on whether predicted l  1. We also calcu-
lated the AUC (area under the ROC curve) for a threshold- 
independent measure of prediction accuracy (Fielding  
and Bell 1997). Finally, we calculated the mean predicted 
value of l for each abundance class ([0], [1–10], [10–100], 
[100–1000], [1000, ∞]).
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future climate scenario. For illustration, we increased winter 
temperature by 1 degree and decreased precipitation-based  
metrics by 10%, based on the conservative RCP4.5 sce-
nario for mid-century, median multimodel predicted change 
(IPCC-WGI 2013). We assumed that a 10% decrease in  
precipitation would translate into a 10% reduction in  
summer and winter soil moisture days, although a more 
thorough, spatially explicit downscaling would be ideal. In 
this third case, we compared the present and future values 
of sensitivity/elasticity of l to parameter values and envi-
ronmental conditions (discussed above) to understand how 
vulnerability may alter under climate change.

Results

In this section, we report and interpret our findings on the 
demography of P. repens. Discussion of the more general 
implications of our case study for building DDMs appears 
in Discussion.

Vital rate regressions

Survival and fecundity regressions showed a strong depen-
dence on size, indicating the importance of using a size 
structured demographic model (Table 1; see partial depen-
dence plots, with fitting data, in Supplementary material 
Appendix A). Survival had a positive dependence on size for 
smaller plants (Table 1; Supplementary material Appendix 
A, Fig. A4). This trend is not surprising; seedlings become 
less susceptible to drought mortality by building a root  
system in their first year or so (Manders and Smith 1992). 
In contrast, adult survival was high, peaking near 94% for 
1 m individuals, and an approximately constant function 
of size at moderate to wetter locations (over the relevant 
size range; Supplementary material Appendix A, Fig. A7) 
as expected given the well-developed root systems of larger 
plants (Rebelo unpubl.). The negative size dependence was 
more apparent at drier locations (Table 1; Fig. 2b) where 
the cumulative effect of water resource limitation or higher  
likelihood of droughts over an individual’s lifetime is likely 
more pronounced (Bond 1980). As expected based on 
the sensitivity of a less extensive root system to moisture 
(Midgley 1988), seedling survival was also positively cor-
related with mean annual precipitation with slightly lower 
values in coastal areas (Table 1; Fig. 2a).

Growth and offspring size patterns were driven largely 
by a unimodal response to the number of summer SMD 
(Supplementary material Appendix A, Fig. A2, A11), indi-
cating that P. repens distribution is potentially limited by 
both regions that are too dry and too wet (e.g. Fig. 2c, e, 
5a). In general, growth was predicted to be higher in the 
western half of the range, compared to the east, driven  
primarily by poor performance under lower winter rainfall 
and higher summer rainfall (Fig. 2c, 5a, Supplementary 
material Appendix A, Fig. A2).

Seed production exhibits a qualitatively different spatial  
pattern than that of growth and survival, with higher val-
ues near the Great Karoo desert where large adult mortal-
ity was highest (Table 1, Fig. 2d). Flowering probability was 
strongly size dependent, with 50% of individuals flowering 

Sensitivity/elasticity analysis
We performed two types of sensitivity analysis with respect to 
l, which were mapped across the region. First, we calculated 
parameter elasticities by perturbing regression coefficients 
by d   1%. These were calculated at site i for parameter 
j as eij  [(lperturbed – lfitted)/(  d  bj)]  (bj /  lfitted). We inter-
pret these elasticities to understand how different life history 
transitions contribute differentially to population growth. 
Second, to accommodate the fact that the same environ-
mental predictors appear in multiple vital rate regressions, 
which makes interpretation of the coefficients in terms of  
l challenging, we also explored the sensitivity of l to  
perturbation in the environmental covariates. All environ-
mental predictors were standardized, making these sensitivi-
ties comparable. The sensitivities were calculated at site i for 
covariate j as sij  (lperturbed – lfitted)/(xj 0.1). By changing, 
e.g. the mean July temperature by  0.1, we could map the 
implications for P. repens, integrated over all components  
of the model affected by mean July (winter) temperature. 
We interpret these sensitivities to describe the environmental 
conditions that limit P. repens’ distribution, while accounting 
for the impact across all aspects of life history. The sensitivi-
ties can also be interpreted to qualitatively describe anticipated 
response to environmental change.

Uncertainty analysis
A key advantage of using a Bayesian modeling framework 
is that it enables us to propagate uncertainty through each 
stage (e.g. growth regression) of a model to ‘downstream’ 
stages (e.g. from predicted parent size to survival regression 
parameters to l). This accumulation of uncertainty through  
the model then allows us to explore in more depth the  
patterns of uncertainty in results and predictions via the  
posterior distributions of population statistics (here, l).

We plotted the interquartile range of l in each cell to 
understand where knowledge is lacking. Regions with a large 
interquartile range have environmental conditions with 
uncertain suitability, which can be used to target future data 
collection (and model improvement). The posterior distri-
bution of l was also used to estimate the probability that l 
 1 (indicating likely long term population sustainability) 
by tallying the number of posterior samples that were greater 
than 1. This metric incorporates the uncertainty to identify 
regions that the model confidently predicts could support 
sustainable populations. In contrast to occurrence models, 
which estimate the probability of presence in a grid cell,  
we directly estimate the probability that the environment is 
suitable using the underlying demographic processes.

Scenario-based projections
We predicted l under three different fire and climate sce-
narios. The regional mean fire return time over 1975–2000 
of 18.75 yr is estimated to have decreased 4 yr compared 
to 1951–1975 due to warming and drying associated 
with climate change in this region (Wilson et  al. 2010). 
First, we estimated the impact of future climate change by  
further reductions in fire return-time (an additional four 
years) and predicting l under this scenario. Second, we pre-
dicted the consequences of the fire regime returning to its 
previous pattern by increasing the fire return time by 4 yr. 
Third, we combined the reduced fire time projection with a 
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Population statistics

Population growth rate
Our DDM broadly predicted the spatial pattern of occur-
rence data that we used for model evaluation. Based on a 
threshold of l  1 (positive population growth rate) to indi-
cate a prediction of presence, we correctly predicted 71% 
of (2338) presences and 70% of (3985) absences (Fig. 3). 
Alternative thresholds (to l  1) for determining accuracy 
of occurrence predictions would not have substantially 
improved predictions (Supplementary material Appendix A, 
Fig. A18), indicating that our model is reasonably well cali-
brated. AUC was 0.79, indicating that a randomly chosen 
occurrence point would be correctly classified 79% of the 
time. Of the 121 locations where demographic data were  
collected, 80% were predicted to have l  1. The mean value 
of l was less than 1 at absence locations and increased strongly 
with observed abundance as expected (Fig. 3f ). Given pos-
sible source-sink dynamics, that populations are often not 
at equilibrium, and that factors other than environmental 
suitability can strongly affect species’ distributions (Svenning 
and Skov 2004, Latimer et al. 2006), we would not expect a 
perfect match between population growth rate and observed 
presence/absence data, but this level of qualitative agreement 
across thousands of sample sites is encouraging.

Our predictions exhibit some systematic bias, based on 
comparison with occurrence records. In particular, we over-
predict P. repens’ range in the northwest and under-predict 

by size 0.73 m and 90% of individuals flowering by size  
1.35 m (Supplementary material Appendix A, Fig. A13). 
Edaphic factors had only a minor effect across all vital rate 
regressions. The spatial pattern of the time after which 90% 
of individuals have flowered (Fig. 2f ) is inversely related to 
pattern for growth (Fig. 2c), with longer times in the east 
and toward arid interior regions.

We estimated a constant value (1.1%) of effective recruit-
ment probability based on data from three locations, which 
we used across the entire landscape. It is challenging to 
validate this estimate because the literature on recruitment 
rates in Proteas in general, and P. repens specifically, is scat-
tered with no consistent basis for estimation across different 
stages or time periods of observation, under different experi-
mental treatments (controlled environments or in the field) 
(Witkowski 1991, Mustart et al. 2012), at different spatial 
and temporal environmental conditions in the field (Bond 
1980, Musil 1991, Mustart and Cowling 1993, Maze and 
Bond 1996), or across observations at different times after 
fire (Bond 1984, Heelemann et al. 2008). In any case, the 
use of parent-seedling data to estimate recruitment implic-
itly incorporates all the sources of seed loss that operate in 
any given population (e.g. density dependence, presence 
of pathogens, granivory, dispersal to unsuitable locations, 
etc.; cf. Bond 1980) and hence it is not surprising that our 
estimation of effective recruitment probability is somewhat 
lower than under controlled conditions (Witkowski 1991, 
Mustart et al. 2012).
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southeast (box in Fig. 3d). This indicates that our models 
predict that P. repens performs more poorly under increased 
precipitation than it actually does.

Sensitivity analysis to current environmental conditions 
showed strong responses to seasonal precipitation availabil-
ity, primarily along the margins of the predicted distribu-
tion (Fig. 7). Increasing summer SMD reduced l in the 
high summer SMD regions where our predictions were most 
errant, which we refer to collectively as the high summer 
SMD regions. Inspection of the elasticities related to sum-
mer SMD (Supplementary material Appendix A, Fig. A23) 
and partial dependence plots (Fig. 5a, Supplementary mate-
rial Appendix A, Fig. A2, A10) reveal that the reduction in 
l derives from strong unimodal responses to summer SMD 
in conditions where we extrapolate (summer SMD  1.5). 
That is, a sharp decline in growth and offspring size was 
predicted in regions with relatively higher summer rain-
fall, which reduced l. Observed presences in these regions  
(Fig. 3d) suggest that the true response to SDMSUM  
does not decline so sharply at higher values (see Discussion, 
section Population growth rate).

Uncertainty analysis
Spatially varying confidence in the predictions was apparent 
(Fig. 3b). The average interquartile range of l across all pix-
els in the region was 0.13 (95% HPD interval 0.04–0.32). 
In parts of the region where l  1, however, the interquartile 
range was even narrower (0.04–0.13), indicating higher pre-
dictive confidence in areas that are environmentally suitable 
for the species. The highest uncertainties are in the projected 
unsuitable (l  1) high summer SMD regions, where few 
demographic data have been collected (Fig. 1). Uncertainty 
is high there because the model predicts a sharply declin-
ing response to very high summer SMD (solid line in  
Fig. 5a; see below for discussion of an alternative ‘clamped’ 
model that avoids this sharp decline) with high uncertainty 
about the magnitude of this response (above values of  

its distribution along the border with the Karoo desert in 
the eastern half of the Cape Floristic Region (Fig. 3d). Over 
prediction in the northwest is driven largely by high adult 
survival there, based on the observation that adult survival 
has both high values (Fig. 2b) and elasticities (Fig. 6e). While 
growth is also high in this region (Fig. 2c), elasticity for the 
growth intercept is low (Fig. 6a), suggesting that variation 
in individual growth rates is not driving prediction in this 
region. Winter temperature has a positive coefficient and 
elasticity value in the northwest in the adult survival model, 
suggesting that P. repens may have a weaker response to win-
ter temperature than fitted in our model. This expectation 
is corroborated by under prediction in the mountains bor-
dering the southern and western edges of the Great Karoo 
desert (Fig. 3d). There, adult survival is low (Fig. 2b) and 
most strongly associated with low winter temperatures 
(Supplementary material Appendix A, Fig. A7). Given that 
our survival data did not span the extremes of the winter 
temperature gradient (Fig. 1), it is not surprising that some 
bias exists in the fitted model. Overall, the evaluation data 
suggest that P. repens generally has a weaker response to win-
ter temperature than our DDM estimates; it seems likely 
that colder locations do not strongly inhibit survival (higher 
recruitment is also reported; Holmes and Newton 2004) and 
warmer locations do not substantially enhance it.

Sensitivity/elasticity analysis
Elasticity analyses of intercept and size slope parameters are 
shown in Fig. 6. The intercept of the adult survival model 
had the largest elasticity, particularly in arid regions border-
ing the Great Karoo Desert where adult survival was low 
(Fig. 2b), indicating that populations there were limited by 
the ability of individuals to survive until reproduction. Many 
of the largest elasticity values are seen in the high summer 
SMD regions where our model incorrectly predicts absence: 
high-elevation areas in the southwest (circle in Fig. 3d cover-
ing the Boland and Hottentot-Holland mountains), and the 
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precipitation on growth and consequently l. (a) Growth data (black 
dots) and partial dependence plot of the fitted model (black line; 
95% credible interval in light grey) on summer SMD, a primary 
environmental gradient driving differences in l. Dark grey density 
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maximum value to reflect our expectation that growth does not 
decline with increasing water availability. The results of this experi-
ment, in terms of l and predicted occurrence patterns, are shown 
in (b) and (c), respectively.

1.5 in Fig. 5a). Because summer soil moisture has high elas-
ticity (Supplementary material Appendix A, Fig. A23h, i), 
this results in low but uncertain values of l.

The posterior probability of positive population growth 
(P(l  1)) is a useful metric for assessing confidence that P. 
repens could survive in a location, given all the uncertainties 
in the underlying environmental relationships. Compared 
to the observed abundances in the Protea Atlas evaluation 
dataset and previous abundance modeling (Chakraborty 
et  al. 2011), P(l  1) captured the overall pattern of site 
suitability (Fig. 3e). Grid cells with absences had relatively 
low values of P(l  1) (0.44  0.41 (SD)), while cells with 
higher observed abundance were predicted to have larger P(l 
 1): 1–10 individuals (0.63  0.40 (SD)), 10–100 indi-
viduals (0.63  0.39 (SD)), 100–1000 (0.74  0.35 (SD)), 
and  1000 (0.82  0.31 (SD)). These patterns corroborate 
those found for mean l predictions in Fig. 3f.

Scenario-based projections
Longer fire return times decreased l throughout much of 
the range except in the high summer SMD regions (Fig. 4b). 
The decreasing relationship between l and fire return time 
in the majority of cells is apparent in Fig. 4c and is driven 
largely by the adult survival. In the model, adult mortality 
increases with size (and consequently age; Supplementary 
material Appendix A, Fig. A7) which means that longer fire 
return times allows more individuals to die without repro-
ducing. Since the species relies on an aerial serotinous seed 
bank, the main threat to future persistence of the species in 
most areas appears to be long fire return intervals resulting 
in adult death and the loss of the seed bank (cf. Bond 1980). 
Sensitivity to decreased fire return intervals is similarly driven 
by adult survival patterns (Fig. 4a).

The projected rates of population growth for P. repens 
increased under midcentury scenarios for temperature, 
precipitation and fire regime changes. The amount of  
suitable habitat in the east also increased (Fig. 4d). The 
largest increases are observed in the high summer SMD 
regions, because the predicted future decline in precipita-
tion shifts these populations toward more favorable summer 
SMD patterns closer to the maximum of individual growth 
in Fig. 5a. Comparing the parameter elasticities between 
present (Fig. 6, Supplementary material Appendix A,  
Fig. A22–A23) and future (Supplementary material 
Appendix A, Fig. A25–A26) shows a reduced elasticity to 
intercepts and size-based slopes in the future, indicating 
that the more favorable, dryer future conditions buffered 
against population declines across the core and the wetter 
parts of the range of the species. Similarly, models predicted 
a reduced elasticity in the future to parameters describing  
P. repens’ response to temperature and precipitation, partic-
ularly in colder and wetter regions. In contrast, at the drier 
interior margin of the range, the model projects a drop in 
population growth rate by mid-century (blue in Fig. 4d). 
These lower population growth rates decline further if fire 
return times continue to decrease, since frequent fire would 
then kill adults before they have produced many seeds; 
this fire–climate interaction would be a concern primar-
ily in the east, along the northern boarder with the Great 
Karoo Desert, where growth is projected to be lower (also 
observed by Kraaij et al. 2013).

Discussion

DDMs are valuable for gaining an understanding of the 
demographic drivers of species’ ranges and their relation-
ship to environmental variation. For large data sets and vital 
rate regressions with good fit, DDMs should enable robust 
projections of range-wide population-level patterns. When 
data are sparse and numerous assumptions are required to 
develop models, DDMs allow us to study the implications  
of our existing knowledge for range-wide population-level 
patterns and evaluate the consequences of different assump-
tions or hypotheses. Moreover, these models address many 
of the limitations of current demographic and distribution 
models and follow suggestions in recent reviews on bioge-
ography and forecasting population dynamics (Schurr et al. 
2012b, Crone et  al. 2013). Below, we illustrate how our 
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Figure 6. Elasticity of l to regression coefficients for intercepts and size-related parameters. Elasticities for environmental predictors are 
shown in Supplementary material Appendix A, Fig. A21.

models for P. repens offer generally applicable insights, while 
identifying critical knowledge gaps to prioritize for further 
study.

The overall accuracy of our predictions is encouraging 
for predicting species’ ranges from demography, given the 
limitations of available data and the challenges of model-
ing complex population dynamics. We were able to capture 
general spatial patterns in occurrence and abundance in 
spite of the high spatial and temporal variation reported for 
various life history stages of P. repens as well as other Protea 
species (Bond 1984, Midgley 1988, Witkowski 1991, Maze 
and Bond 1996, Holmes and Newton 2004, Higgins et al. 
2008, Mustart et  al. 2012, Kraaij et  al. 2013, Nottebrock 
et  al. 2013). Since climate variables are resolved only at  
1 min, sub-cell resolution of habitat conditions that otherwise 

might yield higher resolution predictions in topographically 
heterogeneous landscapes are unknown. There will inevita-
bly be recruitment limitation at many spatial scales (within 
cells, among neighboring cells and distant cells) (cf. Latimer 
et al. 2009). Furthermore, because our DDMs do not use 
‘absence’ data for model fitting, the regressions of demo-
graphic parameters on environment are not constrained 
by information from unsuitable sites and require extrapo-
lation to unsuitable regions. The occurrence patterns used 
for evaluation are also imperfect; source-sink dynamics can 
lead to ‘false’ presences (Pulliam 2000, Schurr et al. 2012b) 
because a few consecutive favorable years are often all that is 
need to for plants to establish (seedlings typically reaching 
the water table typically within the first year; Manders and 
Smith 1992), even though in an average year they would not 
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predictors by 0.1. This sensitivity incorporates the effect of each predictor across all vital rate models (Fig. 2) simultaneously.

be expected to persist. Furthermore, absences do not indi-
cate that a cell was searched completely and that P. repens was 
not found, but simply that it was not found at a site where 
one or more surveys occurred (Gelfand et al. 2005). Taken 
together, our ability to capture broad scale demographically 
calibrated population patterns across environmentally het-
erogeneous landscapes with a limited number of stratified 
life history stage observation sites supports optimism about 
these methods.

Regressions

An important component of our DDMs for P. repens was our 
use of limited, existing data on the life cycle to parameterize 
a full IPM. Our ability to work around limited data relied in 
part on particular attributes of Protea life history, although 
other taxonomic groups may be modeled under similar 
assumptions. It will be extremely rare to have high-resolution 
data on all life-stage transitions across the full range of envi-
ronmental conditions covered by a species’ range, especially 
for long-lived individuals. Indeed, it will often be necessary 
to adopt rapid, one-shot sampling strategies to be able to 
measure demographic rates at replicate sites across multiple 
environmental gradients. Coverage of many populations will 

be necessary to capture environmental dependencies and to 
reduce the chance of mistaking idiosyncrasies of particular 
populations for broader patterns. For these reasons, strategies 
for using sub-optimal data will be essential for the further 
development of DDMs. Ideal growth data includes sequen-
tial observations of the same individuals over many years. 
However, average growth increments might be sufficient in 
some cases for species whose age, current size, and allom-
etry can be determined. Ideal survival data might consist of 
sequential observations of marked individuals whose growth 
was measured. Capture–mark–recapture data may be avail-
able for some species to estimate survival probabilities even 
if size-structure is unavailable. Ideal fecundity data might 
consist of observations of the number of offspring produced 
by each individual, recruitment rates (if applicable), and the 
resultant sizes of the offspring. However, parent-seedling 
ratios may provide enough information to describe effective 
fecundity if it is not critical to break recruitment into its vari-
ous component processes leading from parents in one period 
to offspring in the next. Clearly, the usefulness of different 
data sources for DDMs with requires further study.

Many insights are possible simply from mapping vital 
rates. In our example, the spatial patterns of growth, off-
spring size, seedling survival, adult survival and flowering 
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probability are relatively similar, with favorable values in  
the mountainous regions of the interior Cape Floristic 
Region (typically bounded by the coast and arid desert areas;  
Fig. 2a–c, e, f ). In contrast, seedhead production is most 
favorable in mountainous areas closer to the Great Karoo 
desert to the north and east of the CFR (Fig. 2d). Our 
DDM predicts many fewer populations with l  1 in the 
region where seedhead production is high. Taken together, 
the fecundity, survival, and population growth rate patterns 
suggest multiple competing explanatory hypotheses for low 
values of l in this region that could be evaluated with fur-
ther study: 1) higher fecundity trades off with lower survival 
and longer times to flowering in more arid regions to sus-
tain populations (Fig. 2); 2) fecundity is even higher in arid 
regions than our model predicts, which would account for 
our under prediction of viable populations in this regions 
(Fig. 3a); and 3) although the fecundity predictions are 
reasonable, under prediction of viable populations in arid 
regions occurs because adult survival is under predicted (Fig. 
2b). This line of inquiry illustrates how mechanistic hypoth-
eses can emerge from the understanding gained from DDMs 
and their successive refinement. Simulations exploring these 
hypotheses can help evaluate them and guide further, tar-
geted data collection. Simulations (Supplementary material 
Appendix A, Fig. A28) suggest hypothesis 3) is more likely 
than 1) and 2) because increasing the intercept of adult 
survival by one standard deviation improves predictions of 
occurrence (based on l  1) in this region, while in con-
trast, an increase of three standard deviations in the intercept 
of seedhead production model is needed to achieve similar 
results (Supplementary material Appendix A, Fig. A28).

Population growth rate

In this case study, the DDM provided some clear mecha-
nistic insights about P. repens demography and biogeogra-
phy. Distributional patterns are driven largely by the best 
locations for adult survival, and depend less on whether the  
species can grow rapidly or have high reproduction there  
(see Fig. 2 for comparing vital rate maps to predicted l in 
Fig 3a). Summer precipitation has the largest coefficients in 
the regression for adult survival (Table 1), with the result 
that populations in the most arid areas risk having most 
adults die before fire provides a new recruitment oppor-
tunity (cf. Fig. 1k, Supplementary material Appendix A,  
Fig. A7; Bond 1980). Flowering time is substantially longer 
in the east (which may reflect the local ecotypic variation 
found by Mustart et al. [2012] and Kraaij et al. [2013]), so 
if fire frequency were to further increase, populations there 
might become threatened. At the same time, the higher 
temperatures and frequent fires expected in the future are 
predicted to increase population growth rates in the core of 
the range through their effects on growth, especially in the 
coolest and wettest areas (Fig. 4a, d; Table 1).

Adult survival patterns drive many of the predictions; it 
generally shows the highest elasticities (Fig. 6), making it a 
more important influence on population growth rates than 
expert opinion would suggest (www.proteaatlas.org.za/
mortality.htm). Previous experimental work on similar 
species tended to show that recruitment rates (including 

first-year survival) most often had the highest sensitivities 
(Latimer et  al. 2009). But in those models, we assumed a 
constant and relatively high rate of adult survival, whereas 
the extensive field surveys in this study revealed an unexpect-
edly high variance in adult mortality rates. The DDMs show 
that when adult survival is lower and more variable, this vital 
rate tends to drive population growth and persistence. More 
consistent with our previous intuition is that population 
growth rates are most sensitive to reductions in precipitation 
at drier sites, based on unimodal response of growth to sum-
mer and winter soil moisture availability (Table 1; Fig. 5a, 
Supplementary material Appendix A, Fig. A2).

Errors in our predictions also lead to insights. First, our 
models predict that populations are unsustainable in the 
cool and very wet Boland-Hottentots Holland Mountains 
(circled region in Fig. 3d), although many presences and no 
absences have been observed there (Fig. 3c, d). In order to 
build an IPM in this region, regression models were extrapo-
lated three standard deviations beyond the range of the data 
along the upper end of the summer SMD gradient, corre-
sponding to an extremely high rainfall region (up to 3000 
mm yr1; Fig. 5a). The strong unimodal response to summer 
SMD apparently overestimated the steep decline in growth 
in response to very high summer moisture availability. While 
a decline in growth toward the lower end of the moisture 
gradient is expected due to water limitation, we have no 
reason to expect lower performance in P. repens with higher 
rainfall (with the exception of unsuitable wetland soils; cf. 
Seiben et  al. 2004). This suggests that favorable modifica-
tions to the vital rate models (e.g. increased intercept or size-
slope parameters) would improve predictive performance 
there. To explore the implications of these expectations and 
the consequences of extrapolating to high summer SMD val-
ues, we clamped the growth and (closely related) offspring 
size models at their maximum values (dashed line in Fig. 
5a) and calculated l. Prediction of presences were drastically 
improved in the high summer SMD regions (compare Fig. 
5b, c, vs Fig. 3a, d), though there were still some incorrect 
predictions along the coast (smaller grey rectangle in Fig. 5c 
vs Fig. 3d). In any case, it is clear that accurately character-
izing P. repens’ response to the full range of summer moisture 
levels and exploring other predictors to describe its absence 
from the eastern coastal region will require further data col-
lection and investigation of potential ecotypic differentiation 
in this part of the range (cf. Mustart et al. 2012, Kraaij et al. 
2013). This type of modeling experiment highlights how 
DDMs facilitate an understanding of the link between spe-
cific ecological processes and environmental gradients when 
extrapolating models.

A potentially important omission from our model for 
P. repens is density dependence. Literature on the influ-
ence of density dependence in Protea populations is mixed: 
while there is some indication that it is most apparent in 
seedhead production with an Allee effect (Maze and Bond 
1996, Nottebrock et al. 2013), others have found that seed-
ling survival density dependent effects may be weak (Bond 
1980, Midgley 1988, Latimer et  al. 2009), and yet others 
have found negative density dependence of fecundity and 
seedling parent ratios in Proteaceae (Bond et al. 1984, 1995, 
Esler and Cowling 1990). In part, the variable evidence for 
density-dependence reflects a fire-dominated system where, 
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unlike many other systems, fires continually reset popula-
tion structure every 17 yr, on average. Our existing models 
may be sufficient to implicitly incorporate density depen-
dence if it occurs primarily during the first few years after 
fire; the parent-seedling ratios that we use to parameterize 
the seedling survival model implicitly include the outcome 
of whatever density dependence may occur during establish-
ment and maturation. More data is needed to determine  
the consequence of density dependence among adults. In 
any case, our models appear to yield reasonable predictions 
without explicitly accounting for density dependence.

Limitations of DDMs

Though the goal of this paper is to show that DDMs can 
provide useful insights even in the absence of large data sets, 
they do have some limitations. The regressions described 
here, which combine data across sites and years, require 
sampling across the full range of the relevant environmen-
tal gradients with sufficient density of samples to accurately 
estimate the variation in demographic responses. There are 
also some limitations to the relatively simple models that we 
impose to take advantage of the IPM framework: although 
we model temporal dynamics, we do not explicitly incorpo-
rate dispersal to fully estimate spatio-temporal population 
dynamics (cf. Pagel and Schurr 2012) for proteas. Hence our 
predictions can be interpreted as short-term projections or 
as potential distributions, in the absence of dispersal limita-
tion. In principal, however, our demographic models could 
readily be coupled with a dispersal model (cf. Merow et al. 
2011, Pagel and Schurr 2012, Cabral et al. 2013) such as the 
secondary wind dispersal model described by Schurr et  al. 
(2005). Under certain simplifying assumptions about spatial 
structure, spatially explicit IPMs can be used (Jongejans et al. 
2011). Environmental stochasticity is also omitted from our 
models, although many tools exist for to accommodate it in 
matrix projection models that are readily adapted to IPMs 
(cf. Caswell 2001, Metcalf et al. 2008). In our case study, the 
negative influence of stochastic variation in fire return times 
would likely decrease our estimates of l because serotinous 
nonsprouters like P. repens are adversely affected if fires arrive 
before reproductive maturity and their fecundity may decline 
if fire intervals are very long (Bond 1980). Our models also 
omit biotic interactions, although these could in principle be 
included following methods used in other IPM studies: e.g. 
competition (Adler et al. 2010, 2011); disease (Bruno et al. 
2011); seed predation (Dahlgren and Ehrlén 2011).

Conclusions

Until more environmentally stratified demographic data 
become available, interpolation, imputation, and expert 
opinion will play a key role in linking demography to geo-
graphic distributions. The regression models used by IPMs 
are valuable for interpolation, while Bayesian models facilitate 
imputation, integration of prior information, and propagat-
ing uncertainties through various stages of the analysis. Using 
these tools, we can determine the most sensitive attributes of 
life history and environmental dependence to better struc-
ture demographic sampling schemes. When demographic 

data are missing, occurrence data, which are often more  
readily available, can be used to explore different demographic 
assumptions in attempts to reproduce observed occurrence 
patterns. This ‘inverse modeling’ strategy can help in explor-
ing how qualitative differences in species’ distributions relate 
to different demographic mechanisms. As predictions rely 
more heavily on assumptions, inference should shift from 
quantitative predictions to qualitative ones, such as the effect 
of positive versus negative relationships on population per-
sistence. Insights from these explorations can provide proof 
of concept for sampling designs focused on different parts of 
geographic or environmental space for future demographic 
studies.

DDMs represent a next step beyond the correlative 
occurrence models that are typically used to understand or 
predict geographic distributions. This advance comes at the 
expense of greater data requirements; however we argue that 
process-based modeling, even driven by expert opinion and 
limited data, can provide valuable insights into population 
and range dynamics that are not possible with occurrence 
models. DDMs can predict temporal dynamics and facilitate 
understanding of the relationship between specific demo-
graphic processes and environment, which is particularly 
critical when extrapolating. DDMs can potentially predict 
many more population statistics than those illustrated here, 
including responses to stochastic environments, size distribu-
tions, passage times to critical life history events, life expec-
tancies, reproductive rates, etc. (cf. Caswell 2001). DDMs 
can take advantage of valuable existing occurrence data sets 
to evaluate model assumptions and predictions. Finally, if 
further data collection is an option, we hypothesize that even 
short term environmentally stratified demographic data are 
likely to be more insightful than a large number of occur-
rence records collected with the same amount of human and 
financial resources. While fully parameterized process-based 
models of spatiotemporal population dynamics remain data 
hungry and elusive, DDMs represent a manageable step in 
the right direction.
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