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Abstract The environmental cycling of mercury (Hg) can

be affected by natural and anthropogenic perturbations. Of

particular concern is how these disruptions increase

mobilization of Hg from sites and alter the formation of

monomethylmercury (MeHg), a bioaccumulative form of

Hg for humans and wildlife. The scientific community has

made significant advances in recent years in understanding

the processes contributing to the risk of MeHg in the

environment. The objective of this paper is to synthesize

the scientific understanding of how Hg cycling in the

aquatic environment is influenced by landscape

perturbations at the local scale, perturbations that include

watershed loadings, deforestation, reservoir and wetland

creation, rice production, urbanization, mining and

industrial point source pollution, and remediation. We

focus on the major challenges associated with each type of

alteration, as well as management opportunities that could

lessen both MeHg levels in biota and exposure to humans.

For example, our understanding of approximate response

times to changes in Hg inputs from various sources or

landscape alterations could lead to policies that prioritize

the avoidance of certain activities in the most vulnerable

systems and sequestration of Hg in deep soil and sediment

pools. The remediation of Hg pollution from historical

mining and other industries is shifting towards in situ

technologies that could be less disruptive and less costly

than conventional approaches. Contemporary artisanal gold

mining has well-documented impacts with respect to Hg;

however, significant social and political challenges remain

in implementing effective policies to minimize Hg use.

Much remains to be learned as we strive towards the

meaningful application of our understanding for

stakeholders, including communities living near Hg-

polluted sites, environmental policy makers, and

scientists and engineers tasked with developing watershed

management solutions. Site-specific assessments of MeHg

exposure risk will require new methods to predict the

impacts of anthropogenic perturbations and an

understanding of the complexity of Hg cycling at the

local scale.
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INTRODUCTION

Global efforts sparked by the Minamata Convention are

underway to reduce releases of mercury (Hg) to the envi-

ronment (Selin et al. 2018). These efforts, in addition to

global perturbations such as climate change, have the

potential to greatly alter the worldwide distribution and

impact of Hg, as described in companion papers (Eagles-

Smith et al. 2018; Obrist et al. 2018; Selin et al. 2018). Hg

exposure risk can be ameliorated by strategic management

of individual ecosystems. In this paper we review and

evaluate the many site-specific human activities and

alterations to landscapes that can affect Hg transport,

methylation, and bioaccumulation, including mining, for-

estry operations, urbanization, rice cultivation, nutrient

loadings, wetland and reservoir creation and management,

and industrial contamination.

While Hg released into the environment is typically in

an inorganic form, concerns about human and wildlife

exposure are mostly related to monomethylmercury

(MeHg) that accumulates in fish and other food. MeHg is
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produced in ecosystems through naturally occurring pro-

cesses that convert inorganic Hg to MeHg. These processes

and the extent of MeHg bioaccumulation are key aspects of

the Hg cycle and depend on a number of site-specific

conditions. To illustrate the critical role of ecosystem

processes in Hg exposure risk, Fig. 1 shows the broad range

of MeHg levels found in the sediments and soils of more

than 200 perturbed systems, spanning a wide range of Hg

contamination. MeHg content as a fraction of total Hg

spans three to four orders of magnitude at any given total

Hg content.

To evaluate the impacts of natural and anthropogenic

perturbations on Hg exposure risk, we must consider the

complex array of atmospheric, hydrological, biological,

ecological, and geochemical processes that control Hg

transport and transformation to MeHg in the environment,

as described in many previous reviews (Ullrich et al. 2001;

Selin 2009; Liu et al. 2012b; Lucotte et al. 2012; Driscoll

et al. 2013; Hsu-Kim et al. 2013) and highlighted briefly

here. Atmospheric Hg is primarily in the gaseous elemental

form Hg0, which has a relatively long atmospheric lifetime

allowing for its widespread distribution (Schroeder and

Munthe 1998). The oxidation of Hg0 in the atmosphere is a

key process that governs the spatial distribution of wet and

dry Hg deposition to land or water (Selin 2009). Deposited

Hg can be highly reactive towards further transformation

such as photochemical reduction (Amyot et al. 1997;

Schroeder and Munthe 1998), incorporation into vegetation

(Graydon et al. 2012; Rea et al. 2002), chelation to dis-

solved natural organic matter (NOM) (Aiken et al.

1998, 2011), and sorption to particles (e.g., organic matter,

minerals, microorganisms) (Gerbig et al. 2012; Liu et al.

2012c; Skyllberg 2012; Vost et al. 2012). In addition to

direct atmospheric deposition, Hg release into waterways

can originate from upland runoff, industrial and mining

point sources, and remobilization and resuspension of

contaminated sediment and soil (Selin 2009; Driscoll et al.

2013). Hg released to waterways is generally strongly

chelated (e.g., Hg-NOM) or associated with particles (both

particulate NOM and mineral particles) (Han and Gill

2005; Hsu-Kim and Sedlak 2005; Balogh et al. 2008;

Schuster et al. 2008; Dittman et al. 2010). Thus, factors that

influence NOM and particle mobilization are critical dri-

vers of Hg transport.

Recently deposited, transported, or mineralized Hg

tends to be more reactive towards methylation and bioac-

cumulation than ‘‘old’’ Hg that has aged in place in sedi-

ments and soil (Hintelmann et al. 2002; Paterson et al.

2006; Harris et al. 2007; Orihel et al. 2008; Jonsson et al.

2014, 2017). The aging effect for Hg may stem from the

relative differences in bioavailability of Hg forms; weakly

sorbed, amorphous, or nanostructured Hg forms may be

Fig. 1 Total Hg and MeHg contents observed at more than 200 aquatic sites that have been perturbed by anthropogenic activities. The risks of

Hg exposure at these sites generally depend on the mobilization potential of Hg from the site as well as the potential for MeHg bioaccumulation

and exposure to wildlife and humans. References for the data used in the figure are provided in the supplementary material
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more soluble at the bacterial cell envelope compared to

more recalcitrant forms of Hg (e.g., strongly sorbed to

particulate matter, sparingly soluble microcrystalline Hg

mineral forms) (Fig. 2) (Deonarine and Hsu-Kim 2009;

Graham et al. 2012; Jonsson et al. 2012; Zhang et al.

2012b; Pham et al. 2014). Knowledge of the relative

bioavailability of inorganic Hg species could allow site

managers to develop strategies that distinguish exposure

risks between multiple sources of Hg. However, we still

lack tools that can quantitatively classify the sources of Hg

with respect to methylation and food web accumulation

potential. The challenge is due to the complexity of the Hg

biogeochemical cycle in aquatic ecosystems as well as

limitations of existing measurement capabilities.

The conversion of inorganic Hg to MeHg in the envi-

ronment is primarily a microbially driven process that is

commonly present in anaerobic sediments, saturated soils,

anoxic bottom waters, as well as anoxic engineered sys-

tems (e.g., wastewater treatment, bioreactors) (Barkay and

Wagner-Dobler 2005). There is also evidence of MeHg

production in O2-containing surface oceans (Lehnherr et al.

2011; Lamborg et al. 2014; Gionfriddo et al. 2016),

although the mechanisms of this process are not well

understood. Hg-methylating microorganisms identified to

date include sulfate reducers, iron reducers, methanogens,

and a handful of fermentative and syntrophic Firmicutes

(Compeau and Bartha 1985; Fleming et al. 2006; Kerin

et al. 2006; Ranchou-Peyruse et al. 2009; Gilmour et al.

2013a; Yu et al. 2013; Podar et al. 2015). The diversity of

these organisms is still being realized; however, they all

share the hgcA and hgcB gene cluster that encodes for

proteins involved in intracellular methylation of inorganic

Hg(II) (Parks et al. 2013). Methylating organisms are

prevalent in benthic aquatic settings [e.g., saturated soil

and sediment (Gilmour et al. 1992; Branfireun et al. 1999;

King et al. 2000, 2002; Hines et al. 2006; Monperrus et al.

2007; Mitchell and Gilmour 2008; Avramescu et al. 2011)]

as well other microenvironments with steep redox gradi-

ents (e.g., periphyton, biofilms, microbial flocs) (Mauro

et al. 2001; Achá et al. 2011; Yu et al. 2013; Hamelin et al.

2015; Ortiz et al. 2015; Podar et al. 2015; Gascón Dı́ez

et al. 2016; Olsen et al. 2016).

MeHg can also be degraded by biotic and abiotic pro-

cesses. These include photochemical decomposition path-

ways (Sellers et al. 1996; Hammerschmidt and Fitzgerald

2006; Lehnherr and St. Louis 2009; Hammerschmidt and

Fitzgerald 2010; Zhang and Hsu-Kim 2010; Black et al.

2012) and the microbial Hg detoxification pathway enco-

ded by the mer operon, which can both demethylate MeHg

and reduce inorganic Hg(II) to Hg0 (Barkay and Wagner-

Dobler 2005). The mer system is found mainly in aerobic

bacteria and is believed to be inducible with sufficient Hg

Fig. 2 Perturbations to ecosystems may affect key factors that contribute to the production of MeHg in the aquatic environment. These factors

include the geochemical speciation (bioavailability) of inorganic Hg, the productivity of methylating microorganisms, and the degradation of

MeHg. In most anaerobic environments, inorganic Hg is predominantly associated with particles comprising sulfides and natural organic matter

(NOM). The relative bioavailability of particulate Hg can vary greatly between ‘newer’ forms (e.g., weakly sorbed, amorphous, or nanostructured

species) compared to ‘older’ aging states (e.g., strongly sorbed, well-crystalline, macrostructured species). Hg methylation rates also depend on

the growth and productivity of hgcAB? microorganisms, which entail a wide diversity of species that can be roughly grouped into three major

clades: d-Proteobacteria, Firmicutes, and methanogens. This anaerobic microbiome will also alter the chemical composition of its environment

(e.g., sulfide, organic carbon, redox potential) that can subsequently alter Hg speciation and bioavailability
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exposure to the organism. MeHg degradation in anaerobic

niches can be rapid (Hines et al. 2012; Tjerngren et al.

2012; Cesário et al. 2017), but much less is known about

microbial MeHg decomposition and dark abiotic

demethylation processes (e.g., via sulfides) in anaerobic

settings (Craig and Moreton 1984; Oremland et al. 1991;

Wallschlager et al. 1995; Jonsson et al. 2016).

While establishing the net production of MeHg in

aquatic systems would be a major step towards under-

standing the potential risk of Hg pollution, the bioaccu-

mulation and biomagnification of MeHg in the food web

determines mercury exposure to humans and wildlife. The

process of MeHg bioaccumulation depends on many eco-

logical factors, though food web dynamics appears to be

the primary driver of MeHg levels in fish and other wild-

life, rather than microbial methylation of Hg in benthic

environments (Eagles-Smith et al. 2018).

Overall, many factors influence Hg mobilization,

transformation, and food web accumulation. While this

complexity can be daunting for environmental managers

and regulators to address, it also means that there are

multiple approaches that could be pursued to reduce MeHg

levels in biota. In the following text, we consider a variety

of ecosystem-scale stresses and perturbations, their effects

on Hg cycling in aquatic systems, and possible

opportunities for policy and research to mitigate negative

consequences.

ALTERED SURFACE LOADINGS

Controls on global atmospheric Hg emissions and subse-

quent reduction of Hg loadings to surface waters are

expected to result in an eventual decrease of Hg bioaccu-

mulation in fisheries. The timing of this response, however,

has substantial uncertainty due to the legacy of stored Hg in

terrestrial and sediment compartments of watersheds and

the variability in Hg retention times among watersheds

(Munthe et al. 2007). For example, Hg directly deposited to

surface waters from the atmosphere has been observed to

methylate and bioaccumulate in aquatic food webs rela-

tively quickly (e.g., within months to a year), while Hg

deposited to upland terrain generally requires much more

time (a decade or more) for subsequent impact on pelagic

food webs (Harris et al. 2007; Oswald et al. 2014). Because

of this time difference, the response of individual water

bodies to increases or decreases in Hg loadings is expected

to vary widely with the relative contributions of atmo-

spheric and terrestrial Hg inputs (Fig. 3, Table S1). Direct

atmospheric deposition of Hg tends to dominate over

runoff inputs in marine water bodies. In contrast, lakes and

Fig. 3 Ratio of estimated Hg mass inputs from terrestrial sources (including surface and subsurface hydrological fluxes) relative to direct

atmospheric Hg deposition to surface water for a variety of aquatic systems. Ecosystems with large terrestrial Hg:atmospheric Hg input ratios are

expected to respond more slowly to changes in global Hg emissions relative to ecosystems with low ratios that are projected to respond more

quickly. References for data shown in the figure are provided in Table S1
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estuaries tend to have greater terrestrial Hg inputs relative

to atmospheric Hg deposition. This ratio depends on sur-

face water area relative to watershed drainage area, the

type of land cover within the drainage area (e.g., forested,

urban, etc.), and the presence of known historical point

sources of Hg.

While upland soils in watersheds are known to be long-

term sources of total inorganic Hg to downstream surface

waters, they can also be major sources of MeHg due to

methylation of Hg and storage of MeHg in saturated soils

(e.g., forest and wetland areas) (St. Louis et al. 1994;

Mitchell et al. 2008a, 2009; Chen et al. 2012). Land use

changes that impact flow paths, including forestry practices

as described below, can exacerbate MeHg flux from

watersheds (e.g., Shanley et al. 2008; Flanders et al. 2010;

Babiarz et al. 2012). This increase in MeHg flux from

upland soils directly to surface waters could provide a

direct path towards bioaccumulation of MeHg in the

pelagic food web, especially compared to other potential

sources of MeHg such as sediments that would enter the

water column at a slower rate (Jonsson et al. 2014). Ter-

restrial runoff of NOM can also change the base of the food

web from autotrophic to heterotrophic production, resulting

in a shift of the food web structure and subsequent MeHg

bioaccumulation pathways (Jonsson et al. 2017).

The loading rates of other key constituents (e.g., organic

carbon, sulfur, nitrogen, phosphorous) can also alter the

biogeochemical cycle of Hg. For example, organic carbon

loading to aquatic ecosystems impacts Hg cycling in a

variety of ways. Dissolved and particulate NOM tends to

be the vehicle of Hg transport in surface waters. Thus,

increased organic carbon loads often result in increased Hg

loads (Schuster et al. 2008, 2011; Brigham et al. 2009;

Scudder 2009). Organic matter production or release can

contribute to eutrophication and increase the extent and

duration of anoxic conditions in thermally stratified water

bodies. These changes affect redox gradients which can

result in increased MeHg production (Driscoll et al. 1995;

Slotton et al. 1995; Watras et al. 1995; Herrin et al. 1998;

Eckley and Hintelmann 2006; Merritt and Amirbahman

2008). Chelation of inorganic Hg(II) by NOM has the

potential to lower the bioavailability of Hg for methylation;

however, this effect might be masked by stimulation of Hg

methylators, depending on the type of NOM (Drott et al.

2007; Kim et al. 2011; Gascón Dı́ez et al. 2016; Mazrui

et al. 2016; Bravo et al. 2017) and the limiting factor for

net Hg methylation (e.g., Hg speciation, productivity of

methylators, or demethylation processes) (Jonsson et al.

2012; Zhang et al. 2014b; Kucharzyk et al. 2015; Liem-

Nguyen et al. 2016). Organic matter loads also influence

the structure of pelagic food webs, with secondary impacts

on MeHg biomagnification (Jonsson et al. 2017). Taken

together, these processes illustrate how organic carbon

cycling in watersheds is intertwined with Hg cycling in

complex and non-linear relationships.

The impact of sulfate loadings on Hg cycling is well

documented. Sulfate originating from atmospheric depo-

sition, upland runoff, and industrial sources can stimulate

the activity of sulfate-reducing bacteria in peatlands and

freshwater ecosystems, resulting in enhanced MeHg pro-

duction rates (Gilmour et al. 1992; Branfireun et al. 1999;

Jeremiason et al. 2006; Mitchell et al. 2008b; Coleman

Wasik et al. 2012; Akerblom et al. 2013). Thus, reduction

of sulfurous acid deposition has the potential to also reduce

MeHg production and bioaccumulation (Hrabik and Watras

2002; Watras and Morrison 2008; Coleman Wasik et al.

2012). While this impact is straightforward, a secondary

effect of elevated sulfate loading is enhanced microbial

production of sulfide (e.g., Bailey et al. 2017). Inorganic

sulfide in turn alters the distribution of dissolved and par-

ticulate Hg in benthic settings (Fig. 2), depending on the

relative amounts of Hg, sulfide, and organic matter in the

system. The development of models that can successfully

discern the speciation of Hg (or even the bioavailable frac-

tion) in environmental samples remains a major unmet need

within research, management, and policy communities.

Increased loadings of nutrients (nitrogen and phospho-

rous) to lakes and coastal systems and subsequent

eutrophication can alter Hg biogeochemistry in numerous

ways. For example, eutrophication can lower the concen-

trations of MeHg in biota via biodilution and growth

dilution, a process that lowers concentrations of MeHg in

primary producers and consumers due to increased biomass

(Pickhardt et al. 2002; Chen and Folt 2005; Pickhardt et al.

2005; Kim et al. 2008; Luengen and Flegal 2009; Gosnell

et al. 2017). In addition, eutrophication can alter organic

carbon loads to surface waters, resulting in mixed effects

that can increase or decrease MeHg levels in surface

waters, as noted above. Managed alterations such as

additions of nitrate or hypolimnetic oxygenation in the field

have been attempted with some success to change redox

conditions and decrease MeHg concentrations in water, but

these manipulations do not always result in reductions of

MeHg in biota (Matthews et al. 2013; Austin et al. 2016;

Beutel et al. 2016; McCord et al. 2016).

Due to the complex nature of the biogeochemical cycle

of Hg, predicting the net effect of altered loadings of Hg,

MeHg, organic carbon, nutrients, sulfate, and other con-

stituents on MeHg accumulation in organisms remains a

significant challenge. In this respect, management solutions

that utilize a watershed loadings approach (such as total

maximum daily loads in the U.S.) are difficult to formulate.

While much remains to be learned, conceptual models

could still be useful for understanding the main effects of

altered surface loadings. For example, predictions on the

impacts of eutrophication have been successful in some
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cases (e.g., wastewater nutrient inputs) but not others (e.g.,

estuarine nutrient export to coastal waters) (Driscoll et al.

2012). Regardless, these models highlight the relative

importance of eutrophication, including biodilution,

increased sedimentation of Hg, and the potential for

increased in situ production of MeHg (Driscoll et al. 2012;

Soerensen et al. 2016). Likewise, identification of the

chemical forms (or aging states) of Hg and MeHg that enter

surface waters can help guide policies that prioritize

reductions of certain sources, or perhaps assign value terms

to individual sources as a basis for economic incentives or

trading programs for discharge permits. These management

approaches will require a richer understanding of uncer-

tainties associated with the assignment of values, and in

particular, methods to quantify Hg and MeHg bioavail-

ability to relevant organisms.

FORESTRY AND DEFORESTATION

Undisturbed forested ecosystems can effectively sequester

Hg via accumulation in vegetation and soils (Obrist et al.

2011). As a result, forested ecosystems typically have

relatively low runoff yields, averaging 6 ± 2 % of atmo-

spheric Hg deposition (Mason et al. 1997; Balogh et al.

2008; Shanley et al. 2008; Domagalski et al. 2016). In

streams and rivers draining from harvested catchments,

increases in total Hg and MeHg concentrations have been

observed in many (but not all) studies and have been

attributed to increased soil erosion, Hg methylation activ-

ity, and/or mobilization of near surface Hg pools in soils

(Roulet et al. 1999; Fostier et al. 2000; Roulet et al. 2000;

Porvari et al. 2003; Mainville et al. 2006; Allan et al. 2009;

Sorensen et al. 2009; Lacerda et al. 2012; Eklof et al.

2013, 2014; de Wit et al. 2014; Kronberg et al. 2016a;

Ukonmaanaho et al. 2016). Soil erosion can occur as a

result of vegetation removal, road construction, and/or

other forest harvesting practices. In addition to erosion, the

burning of forest slash following logging (as often occurs

in tropical regions where forests are converted to agricul-

ture) has been shown to increase Hg mobilization via

inundation of the otherwise poor soils with cations (Farella

et al. 2006; Beliveau et al. 2009; Comte et al. 2013).

Regardless of the impact of forestry operations on Hg

concentrations, the fluxes of Hg from harvested catchments

are typically two-fold higher than that from undisturbed

forests, largely due to increases in stream discharge fol-

lowing logging (Porvari et al. 2003; Allan et al. 2009;

Sorensen et al. 2009; de Wit et al. 2014; Eklof et al. 2014;

Kronberg et al. 2016b) (Fig. 4). Discharge can increase due

to reductions in evapotranspiration, interception, and

infiltration as well as modified snow accumulation and melt

rates. Forest harvesting can also increase MeHg production

and/or mobilization through several mechanisms. For

example, decreased evapotranspiration can lead to an ele-

vated water table, increased soil moisture, and ponding, all

of which foster anoxic conditions favorable for methylation

(Munthe and Hultberg 2004; Braaten and de Wit 2016;

Kronberg et al. 2016a). Furthermore, fresh organic carbon

inputs from logging debris left on the site may enhance

microbial activity and MeHg production (Eklof et al. 2016;

Kronberg et al. 2016a). However, increased MeHg con-

centrations in streamwater draining harvested watersheds

have only been clearly observed in some studies (Porvari

et al. 2003; Skyllberg et al. 2009; Eklof et al. 2012),

whereas others have shown no significant change in MeHg

response to forestry operations (Allan et al. 2009; Eklof

et al. 2013; de Wit et al. 2014; Kronberg et al. 2016a). The

differing responses among studies, for MeHg as well as

total Hg, are most likely due to site-specific variations in

harvesting practices (e.g., the degree of soil disturbance),

catchment characteristics (e.g., water table depth, slope,

hydrological flow paths), and meteorological differences

(e.g., timing and amount of precipitation). As such, it

remains difficult to make broad generalizations about the

impacts of forestry operations on Hg cycling and MeHg

production.

Greater solar radiative fluxes reach the soil in harvested

catchments, leading to warmer temperatures, which facil-

itate photoreduction and evasion of soil-bound Hg (Mazur

et al. 2014). In addition, deposition of gaseous Hg to

vegetation can have a large impact on the net amount of Hg

released from a landscape, and the reduction in plant

uptake following forestry operations increases the net

evasion of Hg to the atmosphere (Eckley et al. 2016).

Releases of Hg from the surface following forest harvesting

may be similar or larger in magnitude to losses via aqueous

fluxes (Mazur et al. 2014; Gamby et al. 2015; Eckley et al.

2016). Despite increased releases to air and water, har-

vested catchments are still expected to be a net-sink for

atmospheric Hg inputs, albeit less efficient ones compared

to undisturbed forests (Fig. 4).

In addition to catchment-scale impacts, several studies

in boreal and temperate forests have shown that logging

activity correlates with increased Hg concentrations in

sediment and aquatic biota in downstream waterbodies

(Garcia and Carignan 1999, 2000; Sampaio Da Silva et al.

2005; Desrosiers et al. 2006; Van Furl et al. 2010). The

degree to which forestry operations contribute to the vari-

ability of Hg concentrations in fish among lakes may be

relatively minor compared to other factors such as phys-

iography and climate, and the impact is less detectable in

larger lakes (Lucotte et al. 2016). An understudied area is

how the potential impacts of forest harvesting on other

biogeochemical constituents, particularly nutrients, alters

the overall ecology of downstream aquatic ecosystems.

146 Ambio 2018, 47:141–169

123
� The Author(s) 2018. This article is an open access publication

www.kva.se/en



This knowledge gap obscures the impacts on Hg bioaccu-

mulation in receiving waters through processes such as

growth dilution and biodilution (as noted in the previous

Sect. 2). Augmented NOM transport from watersheds as a

function of harvesting, in addition to being a potential

vector for Hg transport, may also impact photochemical

transformations and thus the pools of inorganic Hg

(O’Driscoll et al. 2004) and MeHg (Klapstein et al. 2017)

in lake waters.

Harvesting and site preparation methods that minimize

machinery damage of soils (e.g., winter harvesting on

frozen ground) and promote rapid revegetation appear to

result in little to no downstream MeHg impact (Sorensen

et al. 2009), whereas practices such as stump harvesting,

mounding, and scarification can lead to significant or

highly variable impacts depending on site characteristics

(Munthe and Hultberg 2004; Eklof et al. 2012, 2014).

Other forestry best management practices, such as the

protection of streamside management zones and riparian

buffers, generally offer improved water quality outcomes

(Lakel et al. 2010), but there is a limited understanding of

how these practices influence total Hg and MeHg cycling.

Other common management practices, such as the use of

well-designed, located, and maintained log landings, skid

trails, and forest roads (Brown et al. 2015), have not been

well studied in relation to the management of Hg mobility

and contamination, but one could postulate that surface

erosion control is a strategy that can decrease downstream

Hg transport in nearly all instances.

In summary, the impact of forestry operations and

deforestation on Hg is variable among catchments and

forestry practices, but generally involves alterations to

watershed loadings of Hg, organic carbon, and nutrients.

Much research remains to be conducted in ecosystems

outside of boreal forests of the northern latitudes, particu-

larly in tropical regions. Regardless, relatively well-estab-

lished best management practices involving careful site

selection and protections against soil disturbance and ero-

sion should help alleviate the magnitude and impacts of Hg

transport and transformation.

RESERVOIR CREATION

The impoundment of rivers and streams and the subsequent

creation of reservoirs are among the most common

anthropogenic manipulations of freshwater aquatic

ecosystems. Reservoirs typically aim to provide flood

control or water supplies for irrigation and electricity

utilities. Their impacts on Hg bioaccumulation have been

closely studied in numerous locations. Globally, the total

area impounded by dams may rival the total surface area of

Fig. 4 The influence of different landscape perturbations on Hg accumulation within catchments and Hg exports via runoff and emission. Mean

(±SE) accumulation and export loads were obtained from field studies of undisturbed forest, forested, urbanized, and mine-impacted catchments

and have been scaled relative to a constant atmospheric deposition (10 lg/m2). The calculations and references used to create this figure are

available in the supplementary material
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natural lakes (St. Louis et al. 2000) and continues to grow,

particularly in tropical regions of the southern hemisphere

(Shiklomanov and Rodda 2004; Tuomola et al. 2008). The

impacts of reservoir creation on Hg cycling typically result

in an increase in MeHg production and can occur as part of

shorter-term impacts following the construction of the

reservoir as well as ongoing impacts due to hydrological,

ecological and biogeochemical changes (Fig. 5).

For newly created reservoirs, the increase in MeHg

production and bioaccumulation results from the decom-

position of flooded terrestrial organic material, which leads

to increased microbial activity and increased net MeHg

production in flooded soils (Mucci et al. 1995; Porvari and

Verta 1995; Kelly et al. 1997; Hall and Louis 2004; Hall

et al. 2004; St. Louis et al. 2004; Hall et al. 2009). How-

ever, there are several studies from reservoirs in China

where elevated fish Hg concentrations did not follow

impoundment (Horvat et al. 2003; He et al. 2008; Feng

et al. 2009; Liu et al. 2012a; Li et al. 2015a), likely due to

low catchment organic matter content. Based on this

observation, reductions in catchment organic matter prior

to flooding have been proposed as a means to mitigate Hg

impacts before reservoir creation (Mailman and Bodaly

2006).

Research over the last four decades has demonstrated

that reservoirs can have elevated fish Hg concentrations

compared to rivers and natural lakes (Meister et al. 1979;

Montgomery et al. 2000; Brigham et al. 2002; Kamman

et al. 2005); however, the extent and timing of effects

varies considerably. In large piscivorous fish in boreal

Canadian reservoirs, Hg levels have been shown to

increase three- to six-fold after flooding and remain above

pre-impoundment levels for several decades (Bodaly et al.

2004, 2007; Schetagne and Therrien 2013). The extent of

MeHg bioaccumulation at these sites was high enough to

possibly impact fish reproduction and growth (Scheuham-

mer et al. 2007), although fish growth and yield may

improve after reservoir formation in oligotrophic systems

(Bilodeau et al. 2015). For Quebec reservoirs, peak MeHg

levels occurred at 4–9 years for non-piscivorous fish and

9–11 years for piscivorous fish (Bilodeau et al. 2015). For

hundreds of western US and Canadian reservoirs, the

average peak in fish Hg occurred only 3 years after flood-

ing, and rarely exceeded 3-fold of background (Willacker

Fig. 5 Conceptual diagram showing the short-term and longer-term impacts of reservoir creation on MeHg cycling and bioaccumulation. The

short-term impacts of increased MeHg production are highly dependent on the organic matter content of the flooded catchment, with some

reservoirs projects located in low organic matter watersheds showing no increase in MeHg
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et al. 2016). Lower organic carbon stores (soil and vege-

tation) in western catchments relative to boreal areas may

be a driver of these differences in fish Hg.

In addition to increased MeHg production following the

initial flooding, the ongoing wetting and drying cycles, as

well as reservoir drawdown, can continue to affect MeHg

production in older reservoirs (Orem et al. 2011; Eckley

et al. 2015). During dry periods, reduced sulfur and organic

matter stored in anaerobic soils can oxidize, fueling a pulse

of MeHg production on each rewetting cycle. Additionally,

sulfide production during wet periods modifies dissolved

NOM with reduced sulfur moieties that enhance Hg

availability for methylation (Graham et al. 2012; Poulin

et al. 2017). Sediment wetting and drying cycles can

increase the breakdown of organic matter, which can result

in increased partitioning of sediment-bound Hg into the

porewater phase and increased dissolved organic carbon

production, both of which have been shown to enhance Hg

methylation in reservoirs (Eckley et al. 2017). Finally,

reservoir water-level fluctuations have also been shown to

increase sediment erosion and resuspension of Hg in the

water column, which may make it more available for

methylation (Mucci et al. 1995).

As noted above, observations of reservoirs in China

have suggested less impact (relative to North American

sites) on fish Hg concentrations (Larssen 2010). In addition

to the relatively low organic matter content, the reservoirs

in China had higher flow rates, shorter food webs, and

biodilution and growth dilution that may contribute to

lower fish Hg concentrations (Horvat et al. 2003; He et al.

2008; Feng et al. 2009; Liu et al. 2012a; Li et al. 2015a).

However, unlike the research on reservoirs from North

America, in which a decrease in fish Hg concentrations is

predicted as the reservoir ages, reservoirs in China may

experience an increase in MeHg production over time as

sediment organic matter accumulates from both alloch-

thonous and autochthonous sources (Feng et al. 2009).

Autochthonous organic matter can increase as nutrients are

trapped within the reservoir and the stagnant water condi-

tions created by the reservoir increase the production of

algal biomass.

Tools to predict the timing and magnitude of reservoir

creation on MeHg accumulation in food webs can help

guide resource management decisions (Calder et al. 2016).

Early comparisons among Canadian and Finnish reservoirs

showed that reservoir age, size, temperature, and organic

matter content predicted the magnitude of the reservoir

effect on MeHg bioaccumulation (Rudd et al. 1983; Verta

et al. 1986; Bodaly et al. 1993). Simple regression models

using percent of total reservoir area flooded, or the ratio of

flooded area:volume were shown to predict 75–85 % of

variability in fish Hg for northern Canadian reservoirs

(Johnston et al. 1991; Bodaly et al. 2007), especially if the

upstream flooded area was included in the model. How-

ever, we still lack models that can reliably predict

responses over a wide range of conditions.

The available data and models are heavily biased to

boreal and temperate systems even though most current

reservoir construction projects (and some of the largest

reservoirs in the world) are located in the tropics and sub-

tropics. Notably, boreal Canadian reservoirs may be a

worst-case scenario for organic matter decomposition after

flooding, due at least in part to large carbon stores in peat

(St. Louis et al. 2000). Furthermore, model predictions of

the impacts of reservoir creation can be complicated, even

in the well-studied boreal forest region of Canada. For

example, regression models of existing reservoirs suggest

that the upper limit on peak increases in fish Hg within

reservoirs is about six-fold above pre-impoundment levels

(Johnston et al. 1991; Bodaly et al. 2007). Another model

that used a probabilistic approach incorporating a large

variety of aquatic foods, site-specific bioaccumulation

factors, and an explicit prediction of the impacts down-

stream of the reservoir predicted at 10-fold increase

(Calder et al. 2016).

There are several options to minimize MeHg production

during reservoir construction and ongoing management.

Locations with Hg-contaminated soils or areas receiving

high loads of Hg in runoff or via atmospheric deposition

should be avoided as new reservoir construction sites.

Multiple reservoirs constructed in series may compound

MeHg accumulation (Feng et al. 2009). The harvesting of

vegetation before flooding and extension of fill times could

reduce peak MeHg concentrations after flooding (Kelly

et al. 1997; Hall and Louis 2004; Mailman et al. 2006;

Willacker et al. 2016). With respect to long-term man-

agement of reservoirs, strategies that minimize large fluc-

tuations in water levels between years and avoid drawdown

of water storage during spring could minimize fish Hg.

However, we recognize that these practices may be difficult

with increasingly unpredictable precipitation patterns.

Though not unique to just reservoirs, management

strategies in waterbodies aimed at altering redox conditions

through oxygen or nitrate addition can also be utilized to

reduce MeHg production (Matthews et al. 2013; McCord

et al. 2016). Other management actions aimed at decreas-

ing MeHg production can include reducing the size and/or

development of an anoxic hypolimnion using lake mixers

or selective water withdrawals (Rask et al. 2010; Perron

et al. 2014; Zouabi-Aloui et al. 2015). In addition, fish

species can be stocked or removed in order to promote food

web conditions that can decrease MeHg concentrations in

target fish populations (Lepak et al. 2012; Wolff et al.

2017).
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URBANIZATION

Urban areas cover a relatively small percentage of the

Earth’s surface, but are home to more than half of the

world’s population and often include some commercial and

subsistence fishing in adjoining and downstream water-

ways (Murkin et al. 2003; Liu et al. 2014). Compared to

rural/natural areas, concentrations of Hg have been shown

to be elevated in urban air (Lindberg et al. 2007; Kim et al.

2009; Wip et al. 2013; Fu et al. 2015), soil/street dust

(Manta et al. 2002; Ordonez et al. 2003; Eckley and

Branfireun 2008a; Huang et al. 2012; Rodrigues et al.

2014), and waterbodies (Mason and Sullivan 1998; Rice

1999; Lawson et al. 2001; Clark and Benoit 2009; Bar-

ringer et al. 2010; Rowland et al. 2010; Tong et al. 2013;

Deonarine et al. 2015; McKee and Gilbreath 2015). The

level of Hg contamination in different urban areas can vary

by over an order of magnitude, depending on the presence

of current and historical industrial activities as well as local

geographic and meteorological variables. In some resi-

dential and non-industrial urban areas, total Hg concen-

trations are not elevated compared to rural/natural areas

(Naik and Hammerschmidt 2011; Fleck et al. 2016).

In addition to differences in total atmospheric Hg con-

centrations, the proportion of atmospheric Hg that is par-

ticulate-bound in urban areas can be greater than in non-

urban settings, resulting in enhanced deposition (Fu et al.

2015). The enrichment of particulate-bound Hg in urban air

is likely a function of the proximity to emission sources

and/or reactions with other urban area pollutants, such as

oxidizing agents and airborne particulate matter. The

deposition and accumulation of atmospheric Hg on urban

impervious surfaces (e.g., buildings, roads, parking lots)

often occurs in association with a thin layer of organic film

from the dry deposition of gas phase pollutants (Diamond

et al. 2000; Gingrich and Diamond 2001). Hg deposited to

urban surfaces is relatively labile and it is estimated that

roughly half is released back to the air and the other half

mobilized via runoff (Fig. 4). Due to the impervious nature

of many urban surfaces, deposited Hg remains exposed to

direct sunlight, resulting in photoreduction and evasion of

Hg in urban areas (Gabriel et al. 2006; Eckley and Bran-

fireun 2008a). Because of the high mobility of Hg in urban

environments, the mass of Hg that remains on urban

impervious surfaces can be very low even though the

concentrations are high.

With the low infiltration capacity of urban landscapes,

runoff often occurs as overland flow, which can effectively

remove Hg associated with urban surfaces and entrain Hg-

bearing street dust particles for transport to adjoining

waterbodies (Vaze and Chiew 2003; Fulkerson et al. 2007;

Eckley and Branfireun 2008b, 2009). In forested streams,

dissolved NOM plays an important role in the transport of

Hg in the dissolved phase (Brigham et al. 2009; Stoken

et al. 2016); in contrast, the dissolved organic matter

content can be low in urban areas, with particulate-bound

Hg dominating overall mass transport (Hurley et al. 1998;

Lawson et al. 2001; Lyons et al. 2006; Eckley and Bran-

fireun 2008b).

While total Hg can be very elevated in urban water-

bodies, MeHg concentrations in street dust, sediment, and

water have been shown to be relatively low (Huang et al.

2012), as have MeHg concentrations in fish (Scudder 2009;

Chalmers et al. 2014). In general, urban stormwater man-

agement focuses on the rapid conveyance of water away

from the built environment, thus reducing water stagnation

and the formation of anoxic conditions. With increased

peak flows and erosion in urban waterways, conditions are

significantly less favorable for methylation by anaerobic

microbes in urban environments than in depositional

environments. Higher nitrogen and lower dissolved NOM

in urban streams may also contribute to the lower methy-

lation potential in urban environments. Finally, the

bioavailability of inorganic Hg for methylation in urban

environments may be lower due to higher proportion of

inorganic Hg bound to particles.

Low-impact development features and green infras-

tructure are common in new urban developments and are

designed to reduce discharge to streams and improve water

quality through particle settling. Examples include

stormwater retention ponds, constructed wetlands, bios-

wales, permeable pavement, and green roofs. Retention

ponds and other constructed wetlands have been shown to

be very effective at reducing metal concentrations,

including total Hg; however, they can also be net sources

of MeHg (Stamenkovic et al. 2005; Rumbold and Fink

2006; Jang et al. 2010; Strickman and Mitchell 2017b).

Similar to patterns observed in reservoirs, newly con-

structed retention ponds and wetlands differ considerably

in their initial and long-term MeHg production capabilities

as a function of age and organic matter content of the

impounded soils (Sinclair et al. 2012; Strickman and

Mitchell 2017b). The impact of MeHg from urban con-

structed wetlands depends on their scale and hydrological

connectivity to other waterways; however, this has not yet

been explored in the literature. In most circumstances,

constructed urban wetlands are not likely to be a significant

contributing source of MeHg to receiving water bodies.

RICE PRODUCTION

Agricultural production of rice and other managed agri-

cultural wetlands can be a source of MeHg that bioaccu-

mulates in local wildlife and release MeHg to downstream

waterways (Ackerman and Eagles-Smith 2010; Ackerman
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et al. 2010; Alpers et al. 2014; Rothenberg et al. 2014;

Windham-Myers et al. 2014a, b). Moreover, rice con-

sumption is another recently recognized MeHg exposure

route for humans, especially for certain communities in

Asia (Rothenberg et al. 2014). Rice is a major staple

agricultural crop and provides the primary source of food

energy for nearly half of the global population. Conse-

quently, rice paddies are one of the most widely distributed

land uses in certain regions of the world, such as South and

East Asia (FAO 2002). Rice production methods can be

grouped into broad categories that include irrigated rice,

rainfed rice (rainfed lowland rice and rainfed upland rice),

and flood-prone rice. Irrigated rice represents approxi-

mately 55 % of total area of rice cultivation and 77 % of

the global rice production and often employs alternate

wetting and drying cycles as a means to reduce freshwater

consumption without decreasing yields (FAO 2013).

Rice cultivation can foster anaerobic and organic car-

bon-rich habitats that promote the growth of Hg-methy-

lating microbes, resulting in conditions where MeHg can

accumulate in rice crops (Meng et al. 2010, 2011). As a

result, rice consumption has been shown to be the dominant

pathway of MeHg exposure for certain communities (e.g.,

mining areas and certain inland areas of southern China)

(Feng et al. 2007; Zhang et al. 2010; Li et al. 2012, 2015b).

Elevated concentrations of MeHg in rice grains (up to

140 lg/kg) have been reported in Indonesia (Krisnayanti

et al. 2012) and in different parts of China (e.g., (Horvat

et al. 2003; Qiu et al. 2008; Meng et al.

2010, 2011, 2014a, b; Liang et al. 2015; Tang et al. 2015).

MeHg bioaccumulates in rice more readily than inorganic

Hg, with bioaccumulation factors for MeHg that are

800–40 000 times higher than those for inorganic Hg

(Meng et al. 2010, 2011, 2014a; Zhang et al. 2010). MeHg

exposure via rice in other global regions is also a possi-

bility, as described in a recent study that found moderate

amounts of mercury in European rice products (Brombach

et al. 2017).

Rice seeds have the highest ability to accumulate MeHg

compared to the other tissues of the plant (e.g., root, stalk,

and leaf), and rice paddy soils are the principal source of

MeHg taken up by these plants (Meng et al. 2010, 2011;

Strickman and Mitchell 2017a). MeHg in soil can be taken

up by plant roots and then translocated to the aboveground

parts (leaf and stalk). In the premature plant, the majority

of MeHg is stored in the leaf and stalk; however, most of

this MeHg is transferred to the seed during the ripening

period. On a mass basis, the majority of MeHg is found in

edible white rice. During grain processing, most of the

inorganic Hg (* 78 %) is eliminated, but the majority of

the MeHg remains in the food product (*80 %) (Meng

et al. 2014a). MeHg in whole rice seeds as well as the

edible components exists almost exclusively as CH3Hg
?

bonded to cysteine-like structures (Li et al. 2010; Meng

et al. 2014a), in the form of individual CH3Hg-(L-cys-

teinate) complexes or as part of larger proteins containing

cysteine moieties. This MeHg-cysteine association behaves

like a mobile nutrient and is actively transported to the

endosperm during seed ripening (Meng et al. 2014a). We

also note that the CH3Hg-(L-cysteinate) complex is thought

to be responsible for the transfer of MeHg across the

blood–brain and placental barriers (Kerper et al. 1992;

Kajiwara et al. 1996; Simmons-Willis et al. 2002; Clarkson

et al. 2007).

In addition to the concern for MeHg exposure via rice

consumption, rice agriculture can also be a source of MeHg

to downstream ecosystems. Net export of MeHg from rice

fields has been estimated in some locations, although this

phenomenon may vary within each growing season (Bac-

hand et al. 2014; Windham-Myers et al. 2014b; Tanner

et al. 2017).

Management strategies to reduce MeHg in rice must be

balanced with the need to maximize crop production.

Water management strategies such as intermittent flooding

might alter anaerobic Hg-methylating microbes relative to

continuously flooded rice fields (Rothenberg et al.

2011, 2014, 2016; Peng et al. 2012; Alpers et al. 2014;

Wang et al. 2014). Selenium (Se)-enriched paddy soils

have been shown to reduce MeHg production in paddy

soils, which may be related to the formation of Hg-Se

complexes in the rhizosphere (Zhang et al. 2012a, 2014a;

Wang et al. 2016). Thus, Se amendments have been pro-

posed as a means to reduce the absorption and accumula-

tion of MeHg in rice grains in areas of high Hg

contamination (Zhao et al. 2014; Wang et al. 2016).

However, this approach requires caution due to the known

impacts of Se on wildlife (Simmons and Wallschläger

2005). Different rice cultivars also vary considerably in

grain concentrations of MeHg, suggesting that appropriate

cultivar selection could reduce MeHg accumulation and

exposure in Hg-contaminated areas (Peng et al. 2012;

Rothenberg and Feng 2012; Li et al. 2013). The selection

of non-rice food agricultural crops (e.g., corn, rape,

tobacco, and cabbage) could be another solution, as these

crops do not accumulate MeHg to the same extent as

observed for rice (although inorganic Hg accumulation

would still occur) (Qiu et al. 2008).

Future research on the impacts of rice production for

MeHg release to the environment and rice consumption for

human Hg exposure should examine geographically

diverse areas, including Asian countries beyond China as

well as other major continents where rice production and

consumption is substantial. Such data are critical in

assessing the potential health risks associated with rice

cultivation in Hg-contaminated soils. While the source,

distribution, and accumulation of MeHg in rice plants, as
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well as transport and transformation of Hg species within

paddy fields, have been previously studied, the processes of

Hg methylation in rice fields and the controlling factors are

not fully understood. Furthermore, uptake and translocation

pathways and the detoxification of MeHg in rice plant are

still unknown. As is the case in other ecosystems, newly

deposited Hg may be more readily transformed to MeHg in

rice paddies than older Hg (Meng et al. 2010, 2011).

However, the mechanisms behind this phenomenon are not

well understood, and the link between MeHg concentra-

tions in rice and atmospheric Hg deposition requires further

investigation.

GOLD MINING AND OTHER MINING ACTIVITIES

Hg releases associated with mining can encompass a broad

range of activities, including contemporary artisanal small-

scale gold mining (ASGM), historical mines, and con-

temporary industrialized mines. ASGM generally involves

the utilization of Hg (often imported from other regions)

for amalgamation and extraction of gold and other precious

metals from ore. ASGM relies on unmechanized gold

recovery and in some cases small and heavy equipment use

by individuals and small groups (rather than multinational

corporate entities that operate industrialized mines). His-

torically, the same Hg amalgamation process was used at

larger scale gold and silver mines (e.g., Sierra range of

North America, Potosı́). The legacy of these activities and

the former Hg mine sites such as Almaden, Idrija, Huan-

cavelica, and the coastal range of California have ongoing

environmental inputs of Hg to downstream locations (Ry-

tuba 2000; Foucher et al. 2009; Hagan et al. 2015; Jimenez-

Moreno et al. 2016).

ASGM is currently active in more than 70 countries,

where it is typically little acknowledged, unregulated, or

illegal (Veiga et al. 2006; Telmer and Veiga 2009; Swen-

son et al. 2011; Reichelt-Brushett et al. 2017). Collectively

this practice represents a major global emission source of

Hg to the atmosphere, with estimates ranging from 20 to

37 % of total anthropogenic Hg emissions (Lacerda 2003;

Pirrone et al. 2010; United Nations Environment Pro-

gramme 2013). These estimations often rely on a mass

balance approach for regional imports and exports and can

have a high degree of uncertainty given the lack of reliable

information (Malm 1998; Lacerda 2003; Li et al.

2009, 2014; Telmer and Veiga 2009; Grimaldi et al. 2015)

and few examples of directly quantified Hg emissions

(Amouroux et al. 1999; Balzino et al. 2015). ASGM also

increases health risks for workers (Gibb and O’Leary 2014;

Kristensen et al. 2014; Castilhos et al. 2015) and riparian

populations downstream of mining sites (Lebel et al. 1997;

Grandjean et al. 1999; Maurice-Bourgoin et al. 2000;

Bastos et al. 2006; Diringer et al. 2015), as described in a

companion paper (Eagles-Smith et al. 2018).

The type of ASGM techniques (such as material col-

lection, processing, and disposal techniques) and the extent

of accidental spills govern the amount of Hg release to the

surrounding environment (Telmer and Veiga 2009; Balzino

et al. 2015). Increases in local soil Hg content (Malm et al.

1995; van Straaten 2000) and soil erosion rates are com-

mon features of many ASGM areas (Swenson et al. 2011),

and together are the key aspects influencing Hg transport

and exposure to downstream communities. Extensive

deforestation is often associated with ASGM and could

further contribute to soil erosion and Hg export from

watersheds. However, the impact of deforestation on Hg

transport (relative to inadvertent release and deposition of

Hg from the mining itself) requires further examination,

perhaps by combining remote sensing data (e.g., satellite

land cover) and field observations of Hg mobilization in

watersheds (Swenson et al. 2011; Diringer et al. 2015;

Lobo et al. 2016). The significance of terrestrial Hg inputs

from ASGM relative to direct atmospheric deposition of

Hg to waterbodies near ASGM (Fig. 3) could provide

information for the assessment of other systems and

insights for Hg exposure mitigation.

While ASGM and related processes (e.g., deforestation,

soil erosion, urbanization) are known to increase the

transport of Hg in watersheds, related impacts on biogeo-

chemical transformations of Hg are also important to

consider (Boudou et al. 2005; Alanoca et al. 2016). The

chemical forms of Hg mobilized from recently deforested

areas may differ from other terrestrial sources, and this

difference may be relevant for Hg methylation and MeHg

bioaccumulation. Some ASGM operations utilize cyanide

in conjunction with Hg amalgamation, perhaps to reduce

Hg usage or as a replacement for Hg. Environmental

releases of cyanide have been hypothesized to alter

methylation of Hg in downstream receiving waters perhaps

by suppressing the biological activity of methylators

(Tarras-Wahlberg et al. 2001; Guimaraes et al. 2011). This

hypothesis remains to be fully investigated.

Compared to ASGMand historical mining, contemporary

industrial mining operations are distinct in terms of their

impacts on Hg cycling, most notably because they do not use

Hg as part of the ore extraction process. However, these

mines can increase mobilization of Hg if the orebody of

interest is naturally enriched in Hg (typically gold mines as

well as some copper and zinc mines). Hg can be released

during ore processing via stack emissions and water dis-

charges, but these are typically regulated and can be reduced

through traditional pollution control technologies. However,

fugitive surface-to-air fluxes from the ore, tailings, andwaste

rock piles can be a significant source of emissions from

mines (Eckley et al. 2011a). Because of the large surface area
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covered by many contemporary industrial mines, the annual

surface-to-air emissions scaled over an entire mine site can

be [ 100 kg/year (Eckley et al. 2011b). These surface

emissions can be substantially reduced by capping mine

waste with a thin layer of low-Hg topsoil and/or applying Hg

control reagents to the mine wastes, though the latter

approach needs further evaluation under field conditions

(Eckley et al. 2011b; Miller and Gustin 2013).

In addition to direct emission of Hg to the air, mine

operations can also impact Hg methylation in downstream

aquatic systems by providing a substantial source of sulfate

to receiving waterbodies (Berndt et al. 2016; Bailey et al.

2017) and by altering the surrounding hydrology as a result

of dewatering around the mine pit/tunnels during opera-

tions and subsequent rewetting after closure (Willacker

et al. 2016; Eckley et al. 2017). The drawdown and wetting

cycles yield similar impacts on Hg methylation as that

noted for reservoirs. After the stoppage of operations at

open pit mines, the resulting deep pit lakes are susceptible

to stratification, very high sulfate levels, and low organic

carbon levels that have implications for MeHg production

(Meier et al. 2012; Gammons et al. 2013).

Strategies to manage Hg release from historical and con-

temporary mining activities remain an ongoing challenge,

mainly due to persistent and long-term inputs to ecosystems

and broad geographic distribution of the impact. For example,

some of the highest fish Hg concentrations in Canada are

associated with areas where Hgwas historically used to extract

gold (Lockhart et al. 2005). Similarly, Hg pollution related to

historical Hg mines and use of Hg for gold mining during the

California gold rush during the mid-1800 s continues to be a

concern for downstream waterbodies (May et al. 2000; Alpers

et al. 2006). For contemporaryASGM, alternatives to Hg (such

as cyanide and borax) have been suggested, but they also rep-

resent additional challenges, particularly for subsistenceminers

with limited resources (Hidayati et al. 2009; Spiegel and Veiga

2010; Velásquez-López et al. 2011; Veiga et al. 2014; Cordy

et al. 2015; Køster-Rasmussen et al. 2016). The agreements

outlined in the Minamata Convention may help to regulate Hg

trade (see companion paper (Selin et al. 2018); however, the

impact on unregulated Hg markets remains uncertain. Overall,

effective management of contemporary ASGM requires a

comprehensive approach that takes into consideration the

environmental impacts of concurrent activities as well as

socioeconomic constraints in applying management strategies.

INDUSTRIAL POINT SOURCES

AND REMEDIATION

Historical Hg contamination from industrial sources rep-

resents a major challenge to address for site managers and

neighboring communities who are vulnerable to Hg

exposure. In addition to sites impacted by mining, other

types of industrial Hg contamination include waste dis-

charged from chlor-alkali processing facilities, pulp/paper

mills, oil/gas production sites, and chemical production

facilities. The age of the contamination at any single site is

often several decades old (although newer industrial con-

tamination still occurs in areas without close monitoring or

established environmental regulations). Impacted sites

include terrestrial sites as well as surface waters where Hg

is typically concentrated in sediments (Lindeström 2001;

Bloom et al. 2004; New York State Department of Envi-

ronmental Conservation and U.S. Environmental Protec-

tion Agency 2005; Tomiyasu et al. 2006; Skyllberg et al.

2007; Ullrich et al. 2007a, b; Bravo et al. 2009, 2014;

Balogh et al. 2015). Industrially impacted sites also include

subsurface zones where groundwater discharge of Hg into

surface waters is a concern (Flanders et al. 2010; South-

worth et al. 2010). In many of these systems, total Hg

content in soil and sediment is enriched by orders of

magnitude relative to other ecosystems where Hg is also a

concern (Fig. 1). In some exceptional cases, exposure to

inorganic Hg from soil or vapors may pose a direct health

risk (Robins et al. 2012; Hagan et al. 2013, 2015). Nev-

ertheless, most industrially polluted sites raise concerns

because of MeHg bioaccumulation, mobilization of Hg to

downstream locations, and/or evasion of Hg to the atmo-

sphere. We note that our search of the published literature

on industrially contaminated sites revealed sediment MeHg

contents that tended to be greater than other types of sites

with comparable total Hg content (e.g., mining sites)

(Fig. 1). This observation might be reflective of research

activities that prioritize towards sites with potential health

risks (i.e., sites with high levels of MeHg production and

bioaccumulation) relative to other industrial sites with little

MeHg impact.

The management of industrially contaminated locations

requires assessment of Hg contamination and risk, fol-

lowed by the development of strategies for remediation or

long-term management (Randall and Chattopadhyay 2013;

Bigham et al. 2017). In the course of developing a man-

agement and monitoring strategy, managers first quantify

all sources of Hg to the system, identify areas of high

exposure risk (e.g., high Hg or MeHg concentrations), and

formulate benchmark goals for addressing the problems on

the path towards a remedial action plan. These decisions

require models (conceptual and/or numeric) that can be

used to understand relevant processes for Hg fate, and

perhaps, more importantly, delineate the uncertainties for

risk. In many instances, the evaluation of a site may reveal

that the risk of Hg is declining over time (e.g., due to the

aging of Hg), and an understanding of these trends can help

guide decisions to implement active or passive (and typi-

cally less disruptive) strategies for ecosystem recovery.
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Industrial sites can also have multiple pollutants, in addi-

tion to Hg, that drive exposure risks, and the best reme-

diation and management decisions for one target pollutant

could increase the risks posed by other targets.

Natural recovery of a system (with appropriate moni-

toring) is often the best option for large-scale industrial

sites experiencing decreasing trends in Hg reactivity and

bioavailability. This passive approach is often justified not

only by its lower cost, but also by minimizing disruption to

the ecosystem, which can be a negative consequence of

more active remediation approaches. Active strategies

include ex situ methods such as dredging and excavation

for remediation of high priority Hg hotspots (Rudd et al.

2016). For sites of lower Hg enrichment and broad spatial

extent, in situ methods have garnered substantial interest in

recent years due to the inherently less disruptive impact of

Table 1 Summary of landscape perturbations, how they influence methylmercury in biota, and potential interventions for site managers

Perturbations

such as…
Change landscapes by Impact Hg in the environment by Have potential management strategies and

interventions such as

Altered

loading to

surface

waters

Variable input of Hg from direct

atmospheric deposition and

release from upland sources

Introducing multiple sources of Hg with a

range of methylation potentials

Valuation of Hg inputs based on mass load, Hg

speciation, and methylation potential

Multiple avenues of control (e.g., nutrient loads,

water column oxygenation) to reduce MeHg

production and bioaccumulation

Increasing sulfate inputs to

freshwaters

Stimulating Hg-methylating bacteria,

increasing sulfide that strongly binds

Hg2?

Increasing nitrogen, phosphorous,

and organic matter loads

Eutrophication, biodilution, and alteration

in food web structure that increases

MeHg in biota

Forestry Disturbance of soil cover by

machinery

Increasing erosion of Hg-bearing soil

particles

Logging practices to reduce erosion and soil

disturbance

Selection of logging sites less vulnerable to

impacts

Promotion of faster forest regeneration

Increasing soil moisture Increasing discharge, fluxes of Hg to

downstream bodies of water,

methylation in upland soils

Increasing organic carbon inputs

from logging debris

Enhancing microbial activity and MeHg

production

Urbanization Increasing impervious land

surface cover

Reducing catchment retention of Hg and

increasing mobilization in runoff

Stormwater management best practices

Construction of retention ponds

and wetlands

Increasing habitats that harbor Hg

methylation processes

Reservoirs Flooding carbon-rich soils in

newly formed reservoirs

Increase MeHg production and

bioaccumulation within years after

flooding

Site selection and preparation

Water-level control

Water column oxygenation and destratification
For older reservoirs, fluctuations

in water level and water quality

Create conditions that can increase MeHg

in biota

Rice

cultivation

Creating conditions that favor Hg

methylation in paddy soils

Enhanced bioaccumulation of MeHg in

rice grains and exposure to certain

populations

Water management

Cultivar selection

Chemical amendments to soil

Mining Importing Hg for artisanal gold

mining

Deforestation

Increasing levels of Hg in soils and water

and increase emissions to air

Managed mining concessions

Controls on surface runoff and atmospheric

emissionsIncreasing Hg in runoff and air emissions

Increasing sulfate loads in

downstream areas

Increasing Hg methylation in freshwater

ecosystems

Industrial Hg

use and

releases

Release of Hg to surroundings Increasing levels of Hg in soil and water;

emissions to air

Monitored natural recovery to allow Hg to age

in place

Dredging and excavation of soil/sediment

In situ caps and chemical amendments

Long-term contamination of Hg

from multiple sources

Creating variations in Hg methylation

potential and bioavailability depending

on source, age, and chemical form

Hg mercury, MeHg monomethylmercury
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these methods on the surrounding ecosystem, the potential

for long-term mitigation, and the reduction in costs relative

to dredging and excavation (Ghosh et al. 2011; Wang et al.

2012). For example, sediment caps may be used for stream

bank stabilization and erosion control (generally aiming to

halt or minimize mobilization of Hg-bearing particles)

(Wang et al. 2004; Johnson et al. 2010). In situ amend-

ments involve addition of chemicals or materials directly to

soil or sediments to alter the biogeochemical conditions of

the site. For example, nitrate amendments and active

oxygenation of reservoirs have successfully been used to

artificially elevate the redox potential of the water column

as a means to eliminate or bury the anaerobic zone that

fosters MeHg producing microorganisms (Matthews et al.

2013; Beutel et al. 2014). Other amendments such as black

carbon sorbents and ferrous iron aim to sequester Hg in

sediment/soil and reduce the Hg and MeHg solubility and

bioavailability for uptake (Mehrotra and Sedlak 2005;

Ulrich and Sedlak 2010; Gilmour et al. 2013b; Gomez-

Eyles et al. 2013). We note, however, that the impact of

these processes on Hg speciation remains poorly under-

stood. For example, the addition of activated carbon has

been shown to decrease, increase, or not change overall

levels of MeHg in sediment microcosms (Gilmour et al.

2013b). These responses might reflect reductions in Hg

bioavailability for methylation, reduction of MeHg avail-

ability for demethylation, or alterations to the microbial

community that are essential to these processes. Never-

theless, activated carbon amendments are a promising

option in some cases for reducing MeHg bioavailability to

benthic biota.

Many challenges remain in the development of effective

Hg management strategies for industrially polluted sites.

Innovative tools for source attribution and risk assessment

are in great need and remain an active area of research. For

cases where monitored natural attenuation of Hg is insuf-

ficient, in situ remediation technologies such as chemical

amendments and sediment caps are promising; however,

the implementation of these methods is, for the most part,

currently limited to lab scale and pilot-scale testing. Full-

scale implementation will require a better understanding of

the long-term effects of in situ technologies as well as

methods to evaluate site characteristics that inform the

remediation selection process.

SUMMARY OF MANAGEMENT OPPORTUNITIES

AND RESEARCH NEEDS

A wide variety of anthropogenic and natural perturbations

to landscapes have significant impacts on Hg cycling in

watersheds (summarized in Table 1). These impacts are of

concern if they increase Hg exposure risks to humans and

wildlife. As such, water quality criteria for Hg tend to

consist of fish-based MeHg content, rather than an aquatic

or soil Hg/MeHg value. While this approach for regulation

provides a direct connection between exposure and risk,

this type of criterion does not inform clear ecosystem

management strategies.

As noted in the preceding sections, a specific remedial

action or ecosystem perturbation requires the consideration

of widely variable response times (e.g., years to decades)

for the biogeochemical processes leading to MeHg bioac-

cumulation; understanding the time scales may be the

critical factor in choosing any local Hg mitigation strategy.

Knowledge of the relative sources of Hg input (e.g., surface

versus terrestrial loading as shown in Fig. 3) could offer

managers insights on the variety of Hg sources to a specific

site, the relative response times for control of these sources,

and ecosystem management strategies to minimize MeHg

bioaccumulation.

Whole water or soil/sediment total Hg or MeHg con-

centration criteria might be helpful as a shorter-term gauge

of management effectiveness, but sediment/soil Hg criteria

could be misleading in that total Hg and MeHg concen-

trations do not necessarily correlate with MeHg bioaccu-

mulation. As such, criteria based on a ‘‘bioavailable’’

fraction of total Hg, bioavailable MeHg, and net Hg

methylation potential should be considered as we improve

the functionality of metrics for water quality management.

Approaches for assessing the potential of Hg mobiliza-

tion and net methylation at sites remain a challenge.

However, recent gains in scientific knowledge could be

utilized by site managers. For example, the mobilization of

Hg to downstream and downgradient locations is often

linked to the mobilization of particles (Flanders et al.

2010). Thus, Hg levels can be predicted by particle load-

ings. [We note that sites impacted by liquid elemental Hg0

contamination are an exception, where mobilization is

influenced by dissolution and corrosion rates of discrete

Hg0 phases in addition to transport of secondary mineral

particles (Southworth et al. 2010).] Natural organic matter

can facilitate particle transport by coating particles and

reducing colloidal aggregation and deposition rates.

Moreover, recent research has demonstrated that this effect

varies with the quality of the NOM (e.g., molecular weight,

chemical structure) (Deonarine et al. 2011; Philippe and

Schaumann 2014; Louie et al. 2015, 2016). Optical prop-

erties of dissolved NOM such as specific UV absorbance

and fluorescence signatures could enable the use of real-

time sensors deployed in surface waters as proxies for

dissolved and colloidal Hg transport (Dittman et al.

2009, 2010; Burns et al. 2013).

New tools are also in development to enable meaningful

monitoring information of Hg transformation potential and

source attribution. For example, stable Hg isotope
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signatures are a promising tool to delineate Hg inputs from

multiple sources (Liu et al. 2011; Bartov et al. 2013;

Deonarine et al. 2013; Sherman et al. 2015; Wiederhold

et al. 2015). However, the application of Hg isotopes

requires measurements of the appropriate ‘‘endmember’’

samples as well as an understanding of the extent of iso-

topic fractionation that could occur from a variety of bio-

geochemical transformation processes at the site. The

deconvolution of fractionation processes represents the

major hurdle in applying Hg isotopes information to source

apportionment.

Recent advances in our understanding of microbial Hg

methylation may enable the development of new tools to

monitor and quantify net MeHg production potential at

field sites and perhaps predict the impact of various

remediation strategies. For example, the discovery of the

hgcAB gene cluster in methylating microorganisms has led

to new biomolecular tools to quantify the abundance, and

perhaps activity of methylating microbes in nature (Gil-

mour et al. 2013a; Parks et al. 2013; Podar et al. 2015;

Christensen et al. 2016).

Methods to quantify the reactivity of Hg and bioavail-

ability of Hg to methylating microbes, such as chemical

equilibrium models or selective extractions, have been

tested over the years, but with limited success (Hsu-Kim

et al. 2013; Ticknor et al. 2015). These results might be

explained by the complexity of Hg-sulfide-NOM species in

soil and sediment, which include nanostructured particulate

phases of varying reactivity (e.g., dissolution potential) in

anaerobic settings (as shown in Fig. 2). Hg uptake into

methylating microbes is likely to involve an active mem-

brane transport process (Schaefer et al. 2011, 2014), and

not simply uptake of neutral Hg-sulfide solutes (Benoit

et al. 1999). For this reason, as well as challenges in dif-

ferentiating between dissolved solutes and colloidal parti-

cles in water samples, chemical equilibrium models of

neutral Hg species are no longer employed by the scientific

community to ascertain Hg bioavailability to methylating

bacteria (Hsu-Kim et al. 2013).

Instead, alternative markers to quantify Hg reactivity

and bioavailability are needed, especially models or bio-

logically relevant measurements that can accommodate the

spectrum of Hg species in soil and sediment and are con-

sistent with the process by which methylating microbes

take up Hg (Ticknor et al. 2015). While several methods to

quantify a nominally ‘‘reactive’’ fraction of Hg have been

proposed (Bloom et al. 2003; Marvin-DiPasquale et al.

2009; Liang et al. 2013; Ticknor et al. 2015), the mea-

surements must be interpreted with great care because this

reactivity may not necessarily be relevant to processes

influencing bioavailability. Moreover, these methods gen-

erally have not been explicitly evaluated in experiments

that compare reactivity and Hg bioavailability for

methylators. Likewise, the use of stable isotope spike

experiments to assess the net Hg methylation rate potential

has uncertainties because the outcome of these assays are

highly subjective towards methodology (i.e., chemical

form of the Hg spike, incubation time and conditions) and

unknown changes in speciation of the Hg spike in relation

to the form of ambient Hg at the site.

While tremendous progress has been made in under-

standing the process of microbial Hg methylation, the

mechanism of Hg uptake, how the rates of Hg methylation

vary among the diverse species of methylating microbes,

and if their abundance or activity correlate to methylation

rates remain unknown. The process of dark MeHg degra-

dation in benthic zones remains an even greater mystery

and requires more attention by the research community,

especially since remediation of contaminated sites might

need to focus on strategies to enhance MeHg degradation.

With progress in the understanding of processes that con-

tribute to Hg mobilization and net MeHg production, novel

methods for effective and lasting remediation and moni-

toring technologies are within reach.

Transformational improvements to Hg site management,

such as those outlined above, will take time, but the need

for comprehensive risk assessment tools remain urgent.

Typical site assessments attempt to account for all Hg

inputs and outputs in the system, which enables an

understanding of primary sources and sinks. Other

parameters such as the concentrations and fluxes of sulfate,

organic carbon, filter-passing Hg and MeHg fractions,

dissolved and total sulfide, and redox potential, among

others, could provide insight into the factors controlling

rates of MeHg production, degradation, and food web

bioaccumulation and biomagnification. In some cases,

measurements of isotope ratios of Hg, the bioavailable

fraction of Hg, and the soil/water microbiomes might be

justified as the development and applications of these tools

improve with additional research. Advanced data analysis

techniques should be utilized to help us discern large

datasets of parameters interlinked by non-linear and poorly

defined relationships.

Global-scale perturbations such as climate change will

have local-scale effects such as rising sea level, melting

tundra soils, and altered and extreme precipitation regimes.

Impacts could include large releases of soluble organic

matter, mobilization of Hg-bearing particles, and redox

fluctuations and gradients, all of which can ultimately

impact MeHg bioaccumulation as discussed in previous

sections.

Overall, this synthesis paper outlined the effects of

major anthropogenic landscape perturbations on the dis-

tribution and methylation of Hg in aquatic ecosystems.

Much of the research over recent decades has had a rela-

tively narrow geographical focus (e.g., North America,
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Europe, parts of Asia); however in other locations (Latin

America, Africa, Asia Pacific), large populations continue

to be vulnerable to the negative health consequences of

MeHg exposure. Insights from the existing research liter-

ature can provide insights into the development of sub-

stantive approaches to mitigate Hg distribution and

exposure in understudied regions. Regardless, research in

these regions is still sorely needed, particularly in tropical

environments that have received much less attention in the

Hg biogeochemical research field. Altogether, global- and

local-scale perturbations to landscapes alter the transport

and transformations of Hg in complex ways, and an

understanding of this complexity is needed to guide inter-

national and regional efforts to manage and monitor

reductions in MeHg exposure to populations.
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Dario Achá is a Professor at the Universidad Mayor de San Andrés.

His research interests include biogeochemistry, environmental

microbiology, and aquatic pollution.

Address: Unidad de Calidad Ambiental, Instituto de Ecologı́a, Carrera

de Biologı́a, Universidad Mayor de San Andrés, P.O. Box 10077, La

Paz, Bolivia.

e-mail: dacha@fcpn.edu.bo; darioacha@yahoo.ca

Xinbin Feng is a Professor and Associate Director of the State Key

Laboratory of Environmental Geochemistry at the Institute of Geo-

chemistry, Chinese Academy of Sciences. His research interests

include mercury biogeochemical cycling in the environment and its

health impacts, mercury stable isotope geochemistry, remediation of

mercury contaminated lands, and Cd, Pb, As, and Sb biogeochemical

cycling in the environment.

Address: State Key Laboratory of Environmental Geochemistry,

Institute of Geochemistry, Chinese Academy of Sciences, Guiyang

550002, China.

e-mail: fengxinbin@vip.skleg.cn

Cynthia C. Gilmour is a Senior Scientist at the Smithsonian Envi-

ronmental Research Center. Her research interests include the

microbial ecology of mercury methylation, Hg fate and transport in

ecosystems, and the development of Hg remediation approaches.

Address: Smithsonian Environmental Research Center, 647 Contees

Wharf Rd, Edgewater, MD 21037-0028, USA.

e-mail: gilmourc@si.edu

Sofi Jonsson is an Assistant Professor at Stockholm University. Her

research interests include mercury biogeochemistry in sediments and

marine environments.

Address: Department of Environmental Science and Analytical

Chemistry, Stockholm University, Svante Arrhenius väg 8, 11418
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