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Forest Bird Habitat Suitability Models and the 
Development of General Habitat Models 

by 

Beatrice Van Home and John A. Wiens1 

Department of Biology 
Colorado State University 

Fort Collins, Colorado 80523 

Abstract. Habitat Suitability Index (HSI) models were developed to assess the sensitivity of 
wildlife to habitat perturbations. Because most models consider a single species, their gener- 
ality is limited. We evaluate the feasibility of combining such models for species occupying 
similar habitats to create more general models of wildlife-habitat relations. We base our 
evaluation on an analysis of HSI models for 16 forest bird species. Several features make it 
difficult to consolidate existing models into general, multispecies habitat models. The mini- 
mum area requirements of species are based on different criteria in different models, and life 
requisites (limiting factors) include categories that are not equivalent. Standardization of both 
measurement and definition of minimum area and life requisites is necessary to permit model 
aggregation. Most of the habitat types occur in only a few of the models, and the models differ 
considerably in the number of habitat types considered (1-12). Of the 61 habitat variables used 
in the 16 models, 46 occur in only 1 model. There is also great variety in how habitat suitability 
is related to particular habitat variables through Suitability Index (SI) graphs and mathematical 
functions (HSI equations) that combine SI functions. Because the HSI equations combine SI 
functions in complex ways, any errors in specifying the SI graphs (or in the assumptions 
underlying these graphs) in individual models are amplified when these models are combined. 
Combining SI functions that have different threshold values creates "average" SI curves that 
have no biological reality. Individual HSI models should also be validated if they are to be the 
basis for development of more general models. Validation should focus especially on assump- 
tions about factors limiting population density and productivity and about how SI values are 
combined in equations to produce overall HSI values. We emphasize the importance of 
manipulative field experiments and model sensitivity analyses in such validation activities. We 
compare the "bottom-up" approach, in which individual models are aggregated to develop 
more general models, to the "top-down" approach of beginning with broad statements about 
a system and adding in detail only as it is needed. The bottom-up approach has the advantage 
of building on known functions and mechanisms that can be validated independently, whereas 
the top-down approach may include only the most relevant detail. We consider several 
complications with the bottom-up approach that emerge from our analysis of forest bird 
models, and note as well several difficulties in implementing the top-down approach. We 
suggest that the "envirogram" may offer an alternative approach that is founded on a consistent 
logical structure. Any attempts to model wildlife-habitat interrelations, whether they apply to 
single species or suites of species, must also consider the importance of the spatial and temporal 
scales of resolution used and must treat habitat units as part of a larger landscape mosaic. 

Key words: Habitat suitability models, general wildlife-habitat models, model validation, 
forest birds. 

1 Research was conducted under U.S. Fish and Wildlife 
Service Cooperative Agreement 86111-88-0131, through 
the National Ecology Research Center, U.S. Fish and Wild- 
life Service, Fort Collins, Colo. 80526. 
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The goal of wildlife habitat modeling is to de- 
velop models that can be used to assess wildlife- 
habitat relations and to predict their sensitivity to 
perturbations. Such models may be valuable tools in 
developing land-use plans, managing refuges or natu- 
ral reserves, or mitigating the effects of human activi- 
ties on wildlife species. To succeed, models should 
satisfy three criteria. First, they should be valid. That is, 
they should be founded on functions that are logically 
sound and biologically realistic. Valid models are 
more likely to produce accurate predictions. Second, 
they should be general, so that a single model can 
apply to a wide range of situations without major 
modifications. Third, they should be simple and us- 
able. A valid, general model that is also complex or 
difficult to use, or that requires detailed field measure- 
ments of many parameters, is unlikely to be useful to 
anyone except the modeler. 

Ideally, of course, models should be all of these 
things. However, the priorities of model validity, gen- 
erality, and usability often compete with one another. 
Each has benefits but carries costs, and it is difficult to 
emphasize, for example, validity without some sacri- 
fice in usability. There is therefore no correct balance 
among these priorities. The objectives of a particular 
application of a model or series of models determine 
which may be most important. 

The Habitat Suitability Index (HSI) modeling 
program initiated as part of Habitat Evaluation Proce- 
dures (HEP) by the U.S. Fish and Wildlife Service 
represents an effort to develop an orderly and easily 
used series of models to evaluate wildlife habitat. In 
general, HSI models operate by deriving suitability 
values for different habitat types, converting these to 
habitat unit (HU) values by adjusting for the areas of 
those types present, and then adding the HU values to 
obtain an overall suitability index for a given area. The 
modeling approach has emphasized usability. Efforts 
have also been made during model development to 
ensure that they are biologically valid and operation- 
ally robust. Because the focus of HEP has been on 
species rather than habitats, the models apply to single 
species occurring in specified habitat conditions. Their 
generality is therefore limited. Moreover, because 
these models have not always been developed with the 
same purposes in mind, the objectives of the modeling 
efforts may differ. 

A common feeling persists among modelers and 
managers alike that wildlife-habitat models that are 
general in their applications but specific in their 

predictions would be useful. Generality may be 
achieved in any of three dimensions by: (1) extending 
the coverage from species to include sets of ecologi- 
cally similar species (guilds) or entire communities, 
(2) increasing the area or regions in which a model 
may be employed, or (3) broadening the range of 
cover types to which a model may apply. The limits to 
generality in each of these dimensions are defined by 
differences in the ecology of target species, area- 
dependent changes in habitat responses, and varia- 
tions in ecological responses among cover types, re- 
spectively. Developing greater model generality in the 

second and third of these dimensions involves adjust- 
ing or extending current species-specific models by 
incorporating area- or habitat-dependent changes in 
model functions. Although relatively little work has 
been done in this area, such changes largely represent 
logical and methodological extensions of existing 
themes. Some efforts have been made in the first 
direction, either by considering ecologically similar 
species as a group (Short 1984; Schroeder 1986,1987, 
and unpublished report) or by combining single- 
species models for a set of similar species (Bain and 
Robinson 1988). 

Our objective is to evaluate the latter "model 
combination" approach to developing general mod- 
els of wildlife-habitat relations. We do this by examin- 
ing in detail a series of Service HSI models developed 
for birds inhabiting woodlands and forests. We restrict 
our attention to these HSI models because they have 
been developed within a common modeling frame- 
work and have generally similar objectives, and be- 
cause they focus on species that occupy the same 
general habitat. We ask whether these models share a 
common set of attributes and assumptions that would 
enable one to combine them into a more general 
"forest bird" model. After commenting briefly on the 
objectives of the HSI modeling approach and the set 
of models we examine, we address this question by 
examining the forest bird models in detail. We then 
consider how such models might be validated. We 
conclude by examining some other approaches to 
developing general, multispecies models of wildlife- 
habitat relations. It is not our intention here to under- 
take a general review of wildlife-habitat modeling, 
nor to offer a comprehensive critique of the HSI 
modeling approach and philosophy. Instead, we ask 
whether it may be worthwhile to attempt to build 
general models from existing, species-specific HSI 
models. 
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The Objectives of HSI Models 

Individuals differ in their expectations about the 
ability of HSI models to provide management guid- 
ance. These differences in purpose influence the 
breadth of model applications and the desired accu- 
racy of model predictions, which in turn affect the way 
a model is structured. On the one hand, one may wish 
to make what is known about a species explicit and 
quantitative, whether or not the information is suffi- 
ciently complete. In this instance, the models can be 
useful for pinpointing where further research should 
be directed, but they must be regarded as preliminary. 
On the other hand, there is a need to make available 
to field personnel and managers models that can be 
used for predictive purposes and planning. In this 
instance, the models maybe valuable in designing site- 
specific research on, or anticipating the effects of, 
planned perturbations. Unless this distinction is made 
clear, preliminary models of the first sort may be used 
in the predictive or planning role of the second sort of 
model. In the absence of site-specific experimental 
validation of predicted effects, however, such uses 
would be indefensible. Model validation is therefore a 
critical phase of the development from preliminary to 
planning models. Most HSI models have been con- 
structed largely as working versions rather than as 
final, definitive models. Simplicity has been implicitly 
valued over comprehensiveness, perhaps for the mod- 
els to be useful to field managers having little training 
or experience in this area (A. H. Farmer, National 
Ecology Research Center, Fort Collins, Colorado, per- 
sonal communication). The model structure is there- 
fore simple, and the functions that go into the models 
are relatively easy to understand. Model software is 
accompanied by instructions that allow the user to 
modify functions easily. The functions that are in- 
cluded in each model are based on both published 
and unpublished information that indicates variables 
that can influence the potential density of a species 
through direct or indirect effects on its life requisites. 
Because this information is often limited, however, 
one should probably not rely absolutely on the result- 
ing functions. Nonetheless, the models have been 
published in a way that makes them appear to be final 
products rather than working quantitative summaries 
of the information available to the developers of the 
models. Most HSI models therefore contain elements 
of both of the models mentioned previously: although 
they are in many respects incomplete and preliminary, 

they are nonetheless intended to be used as planning 
tools. 

We believe that most HSI models should be seen 
as quantitative expressions of our best working under- 
standing of the relations between easily measured 
environmental variables and habitat quality (we as- 
sume that habitat suitability or quality is best under- 
stood as a function both of density and of survival and 
reproduction by individuals of a given species [Van 
Home 1983, 1986]) for a species. If this is so, then 
efforts should be made to validate these models before 
using them as predictive management tools. We con- 
sider model validation later in this report; here how- 
ever, we observe that initial validation should be 
directed toward evaluating the internal operational 
structure of models rather than determining whether 
the current models are sufficiently accurate predic- 
tors of field situations, because validating the internal 
structure of models is easier and because trustworthy 
model predictions must be founded on logically and 
operationally sound model structure. 

The Forest Bird Models 

To assess the structure of HSI models and the 
feasibility of aggregating single-species models to 
create general models, we reviewed all the Service HSI 
models (Appendix) that were published as of June 
1988 that described habitat suitability for birds whose 
primary habitat is deciduous or evergreen forest. We 
expected these 16 models to have many features in 
common. We therefore believed that comparisons 
among them might be particularly valuable in high- 
lighting consistencies and inconsistencies in model 
structure and approaches. Such features are a founda- 
tion for developing more general HSI models of 
habitat suitability for guilds or communities of birds 
with overlapping habitat use. To aid in our compari- 
sons, we separated the 16 species into four guilds or 
"taxonomic assemblages" (Jaksic 1981) based on phy- 
logenetic and ecological similarity (Table 1). 

Analysis and Evaluation of the 
Forest Bird HSI Models 

We assessed the forest bird HSI models according 
to the logic behind model construction, consistency 
among models, and the validity of the assumptions 
made by the models. 
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Table 1. Species assignment to guilds, scientific names, period, and minimum areas considered in HSI models for 
these species. 

Species(code) Scientific name Period3 Minimum area 

Galliformes 
Blue grouse (BG) 
Ruffed grouse (RG) 
Sharp-tailed grouse (PG) 
Northern bobwhite (NB) 
Wild turkey (WT) 

Woodpeckers 
Downy woodpecker (DW) 
Lewis' woodpecker (LW) 
Pileated woodpecker (PW) 
Williamson's sapsucker (WS) 

Owls 
Barred owl (BO) 
Spotted owl (SO) 

Passerines 
Pine warbler (PI) 
Yellow warbler (YW) 
Black-capped chickadee (BC) 
Brown thrasher (BT) 
Veery (V) 

Dendragapus obscurus Breeding 

Bonasa umbellus Year 

Tympanuchus phasianellus Year 

Colinus virginianus Year 

Meleagris gallopavo Year 

Picoides pubescens Year 

Melanerpes lewis Year 

Dryocopus pileatus Year 

Sphyrapicus thyroideus Breeding 

Strix varia Breeding 

Strix occidentalis Year 

Dendroica pinus Breeding 

Dendroica petechia Breeding 

Parus atricapittus Breeding 

Toxostoma rufum Breeding 

Catharus fuscescens Breeding 

unknown 

4 ha (20 ha recommended) 
5.3 km2 

4.9 ha 

900 ha 

4 ha 

none 

130 ha 

4 ha 

unknown 
1,963.5 ha 

10 ha 

0.15 ha 
none 

lha 
0.4 ha 

"Model applied to year-round habitat suitability (year) or suitability for the breeding season only (breeding). 

Season and Minimum Habitat Area 

Models for all the passerines and one member of 
each of the three other groups apply to habitat rela- 
tions only during the breeding season (Table 1). The 
passerines are migratory; inclusion of winter habitat 
information in the models would not be possible 
under the present model structure. Of course, models 
that apply only to the breeding season are intended to 
generate useful predictions only of the effects of 
changes in breeding habitat on population density 
and productivity. Such predictions are valid, however, 
only insofar as breeding-season habitat alone limits 
population density; changes in habitat quality in the 
wintering or migratory stopover areas are assumed to 
have no effect on demography. This assumption is not 
likely to be satisfied in "open" populations, in which 
the dynamics observed at a given breeding location 
are influenced by events elsewhere in the species' 
overall range (May 1981; Wiens 1989a). If this occurs, 
the model will be incomplete and it will not be possible 
to verify its predictive power. 

Seasons are vaguely definedinsomemodels(e.g., 
winter may include all or part of the fall and spring 
seasons). Seasons should be clearly defined in each 
model. For example, a definition based on some 
phenological cue (e.g., vernal equinox + bud break) 
might serve to standardize the onset of spring. 

Minimum habitat area is defined for all models as 
the minimum amount of contiguous habitat that is 
required before an area will be occupied by a species. 
This definition is vague (does an occasional visit count 
as occupation?) and does not explicitly describe the 
minimum habitat area required to support a self- 
sustaining population. Thus, a habitat might be as- 
signed a high suitability value without being able to 
sustain a population. Whether or not it is of any value 
depends on whether the larger landscape has sustain- 
able populations that use the habitat in a way that 
enhances the ability öf individuals to survive and 
reproduce. If not, it seems improper to give it a 
positive suitability value. Further, consideration of 
habitat area alone fails to recognize the distinction 
between edge and interior portions of a given habitat 
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area, which may be important for many forest-dwell- 
ing bird species (Lynch 1987; Wiens 1989b). 

These problems are not dealt with in the models 
but must be considered by the managers in model 
application. In fact, minimal area could be defined 
with reference to an individual (even a transient), a 
breeding pair, a self-sustaining population, a popula- 
tion maintaining a given level of genetic diversity, or 
some other biological groupings. The areas included 
by each of these definitions may differ dramatically; 
which is most relevant depends on one's objectives. 

For the species we considered, minimum areas 
were not specified for the blue grouse (Dendragapus 
obscurus) and barred owl (Strix varia), and no mini- 
mum area was assumed for the Lewis' woodpecker 
(Melanerpes lewis) and black-capped chickadee (Parus 
atricapillus). The remaining minimum areas (Table 1) 
are based on minimum territory sizes (yellow warbler, 
Dendroica petechia; veery, Catharus fuscescens; downy 
woodpecker, Picoides pubescens), home range 
(Williamson's sapsucker, Sphyrapicus thyroideus), maxi- 
mum density and expert recommendation by per- 
sonal communication (two different values; ruffed 
grouse, Bonasa umbellus), lek distances (sharp-tailed 
grouse, Tympanuchus phasianellus), citation of mini- 
mum area (northern bobwhite, Colinus virginianus), 
and unknown sources (wild turkey, Meleagrisgallopavo; 
pileated woodpecker, Dryocopuspileatus; pine warbler, 
Dendroica pinus; and brown thrasher, Toxostomafufum). 

Clearly, minimum area will vary as a function of 
several factors. The scale at which habitats are identi- 
fied or how cover types are arrayed in a larger land- 
scape mosaic may influence minimum area. For a 
given species, the area required by an individual is 
likely to vary in relation to its seasonal activity (e.g., 
breeding), its energy demands (e.g., thermoregula- 
tory costs in winter), and the cover types it occupies, 
and it is not obvious which of these is likely to be the 
most limiting minimum. Perhaps the best way to 
strengthen the minimum area values is to collect 
information on breeding density (and perhaps suc- 
cess) in locations of varying sizes and suitabilities. 
Minimum area could then be described as a function 
of suitability (Fig. 1) and used in interpreting model 
output. A coarser approach is to estimate minimal 
areas by using allometric home range-body mass 
relations (Schoener 1968; Calder 1984). We have used 
the equation 

A = 98.6M'15, 

where home range-territory size (A, in ha) to body 

o 

< 

low high 

Habitat Suitability 

Fig. 1. A hypothetical function relating changes in mini- 
mum area required by individuals of a given species to 
increasing habitat suitability. 

mass (M, in kg) to predict the home ranges expected 
for the species we considered in this analysis (Fig. 2). 
Of course, home range-territory size is only one pos- 
sible measure of minimum area. Some of the values 
used in the HSI models agree closely with the allomet- 
ric predictions, but there are substantial departures 
(both positive and negative) for the remaining values. 
Clearly, the present approach has produced wide 
variation among the models for different species. 
Regardless of whether an allometric function or some 
other relation provides the most appropriate estimate 
of minimum areas, some standardization of both defi- 
nition and measurement is needed. In the absence of 
such standardization it would be premature to ignore 
the suitability of habitats occurring in areas less than 
the minimum sizes, particularly where these habitats 
are in a larger mosaic of habitats of varying suitabili- 
ties. For instance, two or more "contiguous" habitats 
that are individually smaller than a specified mini- 
mum area may be large enough in combination to 
exceed minimum area requirements. 

Life Requisites 

Life requisites are the general factors that could 
limit a species in a given habitat or series of habitats. 
The life requisites specified in HSI models are food, 
cover, and reproduction. These categories, however, 
are not equivalent. Food and cover are features of the 
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Fig. 2. The relation between minimum areas specified in 
Habitat Suitability Index (HSI) models for forest bird 
species {open circles) and the size of individual territories or 
home ranges predicted from a home range-body mass 
function (indicated position on line). Species codes are 
YW = yellow warbler, PI = pine warbler, DW = downy 
woodpecker, V = veery, WS = Williamson's sapsucker, 
BT = brown thrasher, NB = northern bobwhite, PW = 
pileated woodpecker, RG = ruffed grouse, SO = spotted 
owl, PG = sharp-tailed grouse, WT = wild turkey. 

environment that may be considered independently 
of the species of interest. In contrast, reproduction is 
a characteristic of the species that is dependent on 
food, cover, and perhaps other life requisites. Changes 
in food or cover might well influence reproduction, 
but the reverse does not occur except indirectly as 
changes in reproductive rates lead to changes in den- 
sity. Likewise, mortality and survival might also de- 
pend on food, cover, and other requisites. In addition, 
different species' models combine life requisites into 
single categories in different ways (e.g., cover + repro- 
duction, food + cover). This makes it difficult to 
compare among models, much less synthesize them 
into more general models. 

The models could be made more explicit by 
separating the life-history traits (reproduction, mor- 
tality and survival) from the measured environmental 

variables in such a way that any change in the mea- 
sured variables must influence food, cover, nest sites, 
or some other factor that, in turn, affects reproduction 
and survival. Later in this report we examine one way 
of ordering the interrelations among life requisites 
more logically. 

Of the HSI models we considered, all but those 
for the blue grouse and ruffed grouse include repro- 
duction as a life requisite that is directly affected by 
changes in some or all of the variables measured for 
model input (Table 2). However, the blue grouse 
model is applied only to breeding-season habitat (Table 
1). The barred owl and spotted owl (Strix occidentalis) 
and yellow warbler models consider reproduction the 
only life requisite affected by changes in the measured 
variables. If we assume that effects on reproduction 
are always mediated by some factor such as adult food, 
nestling food, availability of nest sites, or protection 
from predators, then the causal relation between 
reproduction and the measured variables is not ex- 
plicit in these three models. In the remaining models, 
which include either food or cover life requisites along 
with reproduction, the effects of habitat variables on 
reproduction are clearly mediated by food and cover 
(and perhaps by other factors as well). 

When life requisites (and seasons) are specified 
in HSI models, the assumptions about what general 
factors or seasons may be limiting to a species become 
explicit. One must remember, however, that the fac- 
tors actually limiting population dynamics are known 
for few species, and the specifications included in the 
models therefore usually represent no more than 
educated guesses. Such specifications are necessary to 
proceed with a modeling effort, of course, but the 
eventual success of a model as a predictive tool (rather 
than as a working model) maybe quite sensitive to how 
valid the assumptions about limiting factors or time 
periods really are. If one has failed to include in a 
model the correct limiting factors or times of the 
year, has interrelated them incorrectly, or has mea- 
sured variables that do not relate closely to these limit- 
ing factors, the model predictions may be false or 
misleading. 

Habitats 

Groups of birds that occupy similar habitats are 
potential candidates for combination into multispecies 
models. Some similarities exist in the habitat types 
included in the models for members of each of the 
four groups of birds (Table 3). The five galliform 
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Table 2. Life requisites included in each Habitat Suitability Index (HSI) model. All are listed separately even when they were 
combined in the models (i.e, cover plus reproduction). Winter food or cover may also apply to fall and spring food or cover. 

Food Cover 

Species All year Summer Winter All year Winter        Reproduction 

Galliformes 
Blue grouse X 
Ruffed grouse 
Northern bobwhite 
Plains sharp-tailed grouse 
Wild turkey X 

Woodpeckers 
Downy woodpecker X 
Lewis' woodpecker 
Pileated woodpecker X 
Williamson's sapsucker 

Owls 
Barred owl 
Spotted owl 

Passerines 
Pine warbler 
Yellow warbler 
Black-capped chickadee X 
Brown thrasher X 
Veery 

X 

X 
X X 

X X X 

X X X 

X X 

X 

X X 

X X 

X X 

X 

X 

X X 

X 

X 

X X 

X X 

models all include deciduous forest, evergreen forest, 
deciduous tree savanna, evergreen tree savanna, and 
deciduous shrubland habitats. In addition, three habi- 
tat types are common to four of the five models. Two 
habitat types are found only in one model each. The 
four woodpecker models all contain deciduous and 
evergreen forest types; three of the models include 
deciduous forested wetland. Deciduous wetland is 
found only in the Lewis' woodpecker model. Ever- 
green forest is included in both owl models, whereas 
the barred owl model contains two additional habitat 
types. The passerines form the most heterogeneous 
group. Four of the five passerine models include 
deciduous forest and evergreen forest. The brown 
thrasher model contains nine habitat types that are 
not included in the other passerine models; this model 
is more similar to the galliform models than to those 
of the other passerines. Because we focused our analy- 
sis on forest habitat types, deciduous forest and ever- 
greenforest (14and 15, respectively of the 16models) 
are the most common habitats included in the models 

(Table 3). The next most common habitats, decidu- 
ous tree savanna, evergreen tree savanna, and decidu- 
ous shrubland, are each included in eight models. Five 
of the habitat types occur in two or fewer models. 

To aggregate species-level models to form more 
general models, most habitat types should appear in 
most models.Clearly, this is not the case. The reason 
becomes apparent when one considers the number of 
habitats included in individual species' models. The 
broadest range of habitats (12) is found in the models 
for brown thrashers, northern bobwhites, and wild 
turkeys (Table 3). The narrowest range (1) occurs in 
the spotted owl model, followed by the pine warbler 
and yellow warbler models (2). The owl may have a 
narrow habitat specialization, but for the warblers, 
which occur in other, nonforested habitat types as 
well, no such conclusion is justified. If many of the 
species are restricted to only a few habitat types, it will 
be difficult to develop general models by aggregating 
species models unless (a) the analysis is restricted to a 
particular habitat type, or (b) the distinctions between 
habitat types are ignored. 
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Table 3. Habitat types included in the forest bird HSI models. 

Habitat types3 

Species C DSWEFW DW DFWPFO DF EF DTS ETS DS ES DSS ESS G F O P/H 1 

Galliformes 
Blue grouse X X X X X X X X X X X 11 
Ruffed grouse X X X X X X 6 
Sharp-tailed grouse X X X X X X X X X 9 
Northern bobwhite X X X X X X X X X X X X 12 
Wild turkey X X X X X X X X X X X X 12 
I 2 0 0 0 1 0 5 5 5 5 5 4 4 4 3 3 1 3 

Woodpeckers 
Downy woodpecker X X X X 4 
Lewis' woodpecker X X X X X X 6 
Pileated woodpecker X X X X 4 
Williamson's sapsuckei X X X X 4 
I 0 0 2 1 3 0 4 4 2 2 0 0 0 0 0 0 0 0 

Owls 
Barred owl X X X 3 
Spotted owl X 1 
I 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 

Passerines 
Pine warbler X X 2 
Yellow warbler X X 2 
Black-capped chickadee X X X X 4 
Brown thrasher X X X X X X X X X X X X 12 
Veery X X X X X X 6 
I 0 2 2 0 2 0 4 4 1 1 3 1 1 1 1 1 1 1 

Overall I 2 2 4 1 6 1 14 15 8 8 8 5 5 5 4 4 2 4 

' C = cropland, DSW = deciduous shrub wetland, EFW = evergreen forested wetland, DW = deciduous wetland, DFW = deciduous forested 
wetland, PFO = palustrine forested wetland, DF=deciduous forest, EF =.evergreen forest, DTS = deciduous tree savannah, EFF = evergreen 
shrub savannah, G = grassland, F = old field, O = orchard, P/H = pasture and hay fields. 

Measured Variables 

We have grouped similar variables across models 
(Table 4) to determine whether models of species in 
the same group have similar or identical variables, 
identify variables that are sufficiently similar that they 
could be combined into a single measurement, and 
search for variables that might have unexpected dy- 
namics in models. In these models, variables are mea- 
sured in a series of habitat types that may be a subset 
of the range of habitat types included in the model, 
and a given variable may be used to index the food, 
cover, or reproductive value of a habitat area. The life 
requisites may likewise be a subset of all life requisites 
included in the model for that species. 

Overall, some 61 variables are included in the 16 
models we reviewed. Of these, 1 variable appears in 5 
models and 2 variables are elements of 4 models; 46 
variables appear in only a single model (Table 4). To 
a large degree, the models are species-specific or 
idiosyncratic in the variables they employ. At a more 
general level, variables related to tree height, tree 
density, size (trunk diameter at breast height, dbh), 
and canopy cover are measured for a wide variety of 
species models. All of the variables used in the owl 
models fall into these categories. With the exception 
of one variable in the black-capped chickadee model, 
the snag and log-related variables are found only in 
the woodpecker models. Herb height, herb cover 
and type, and crop-related variables are used mostly 
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Table 4.  Variables measured or used in forest bird HSI models.3- 

X model in 
Galliformes Woodpeckers Owls Passerines which the 

variable 
Variable BG RG PG NB WT DW LW PW WS BO SO   PI   YW BC  BT   V appears 

Tree height 
Average height overstory trees XX 2 
Average lowest branch height 

of conifers X 1 
Tree diameter at breast height 

Mean dbh overstory XXX 3 
Avg dbh pine or oak X 1 
Avg dbh overstory aspen X 1 

Tree number and type 
Density trees > 51 cm dbh XX 2 
Density deciduous trees X 1 
Density coniferous trees X 1 
Density pine or oak X 1 

Tree canopy 
% canopy cover overstory 

trees > 80% tallest tree X 1 
% canopy cover trees > 5 m X X 2 
% canopy closure trees > 5 m X XXX X 5 
% canopy cover evergreen      XX 2 
% overstory tree canopy 

closure pines X 1 
% pine canopy closure with 

deciduous understory X 
% area aspen dominated X 
tree canopy volume/area X 
tree story canopy diversity X 
Ave radius circle with 20 

mature aspen X 
Snag density 

> 15 cm X 
> 30.5 cm X 
> 38 cm X 
> 51 cm X 
soft X 
10-25 cm > 1.8 m tall X 

Snag diameter at breast height 
Average dbh snags > 38 cm X 
Average dbh snags > 51 cm X 

Stumps and logs 
# stumps of specified sizes X 

Trees and shrubs 
Average height woody stems X 
Density woody stems > 1 m tall X 
Basal area woody vegetation X 

Shrub height 
Average height deciduous 

shrubs X X X 3 
Shrub density 

density deciduous shrub X 1 
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Table 4.  Continued. 

Galliformes Woodpeckers Owls Passerines 

Variable BG RG PG NB WT DW LW PW WS BO SO   PI   YW BC  BT   V 

Y, model in 
which the 
variable 

appears 

Shrub cover type 
% shrub > 5 m crown cover    XXX 
% canopy over woody 

vegetation > 2 m X 
% deciduous crown cover 
% area of shrubby cover X 

Mast 
Average dbh of mast- 

producing trees X 
Density of mast tree X 
% tree cover that is mast tree X 
% crown cover mast shrubs X 
% crown cover soft mast shrubs X 

Herbs-height 
Average height herbaceous 

canopy X XX 
Herbs-cover and type 

% herbaceous canopy cover   X XX 
% canopy cover of NB food X 
% herb canopy grass X 
% types providing cover X 
Diversity herb vegetation X 
Mean visual obstruction X 

Crops 
Crop type X     X 
% grain crops within 

specific distance X 
Standing corn X 
Crop harvesting X     X 

Water 
% covertype spring flooded 
Soil moisture X 
% deciduous shrub canopy 

hydrophytic 
Bare ground 

% cover litter > 1 cm 
% cover light litter X 

Distance 
mast storage site X 
forest or tree savanna X X 
between cover types X 

X X 

X 

X 

X 
X 

X 

X 

Total variables per 
species 11    12     3 

aBG = blue grouse, RG = ruffed grouse, PG = plains sharp-tailed grouse, NB = northern bobwhite, WT = wild turkey, DW = downy 
woodpecker, I.W = Lewis' woodpecker, PW = pileated woodpecker, WS = Williamson's sapsucker, BO = barred owl, SO = spotted owl, 
PI = pine warbler, YW = yellow warbler, BC = black-capped chickadee, BT = brown thrasher, V = veery. 
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for the galliform species, although the models for 
these species also include variables from most of 
the other categories. Thus, although the specific vari- 
ables used differ markedly among models, there are 
some similarities within groups of species in the 
general categories of variables that appear. The 
galliform and woodpecker models contain more vari- 
ables than do most of the owl or passerine models 
(Table 4). 

It is difficult to assess which variables from differ- 
ent models might be closely enough related to one 
another to allow use of measurements of a single 
variable in two or more models. In some cases, how- 
ever, variables are identical. For galliformes, three 
variables are found in common in three of the five 
models: shrub cover (measured in slightly different 
ways; Fig. 3A), height of herbaceous canopy (Fig. 3B), 
and percent herbaceous canopy cover (Fig. 3C). The 
functions describing the relations between percent 
shrub-crown cover and habitat suitability, however, 
have very different forms for the blue grouse, plains 
sharp-tailed grouse, and wild turkey (Fig. 3A). Average 
height of herbaceous canopy is related to habitat 
suitability in similar ways for three of the galliform 
species (Fig. 3B). Similarly, percent herbaceous canopy 
cover is optimal for these three species over similar 
ranges (Fig. 3C). The herbaceous variables influence 
different life requisites for each of the three species: 
food, cover, and reproduction for the wild turkey, 
food and cover for the blue grouse, and reproduction 
for the northern bobwhite. The blue grouse and wild 
turkey models share a variable describing the distance 
to forest or tree savanna cover types, although the 
ranges over which this variable is optimal differ (Fig. 
3D). In the wild turkey model this variable is used to 
modify both herbaceous and shrub cover types, whereas 
in the blue grouse model it is used to modify herba- 
ceous cover types only. The variables describing suit- 
ability of different types of crops are similar but not 
identical in the northern bobwhite and wild turkey 
models. 

In sum, height and cover of herbaceous canopy 
types have a similar relation to habitat suitability for 
three of the five galliform species, and type of crop 
may have a similar influence on the northern bob- 
white and wild turkey. The effect of distance to forest 
or tree savanna cover types shows some similarity for 
the blue grouse and the wild turkey. The differences 
among these variables are perhaps subtle enough to 
justify using the same measures in more than one 
model. There are 18 additional variables measured in 
the 5 models that have little overlap, however, either 

because they consist of different types of measure- 
ments or because the functions describing their ef- 
fects on habitat suitability take different forms for the 
different species. 

The HSI models for the woodpeckers contain 
one variable, percent canopy cover of trees, that is 
found in three of the four models (Fig. 3E), and the 
variable, basal area of woody vegetation, in the downy 
woodpecker model incorporates some of the same 
information. The relation of canopy cover to the 
habitat suitability index value differs greatly for the 
three models, however (Fig. 3E). Percent canopy cover 
is believed to affect the food life requisite for the 
Lewis' woodpecker, the cover and reproduction life 
requisites for the Williamson's sapsucker, and all three 
life requisites for the pileated woodpecker. Three of 
the four woodpecker models contain a variable repre- 
senting density of snags, but the minimum diameter 
for a snag to be included is only 15 cm dbh for the 
downy woodpecker, whereas it is 30.5 cm for the Lewis' 
woodpecker and 38 cm and 51 cm (two functions) for 
the pileated woodpecker. Because these differences 
are roughly related to the body masses of these species, 
it might be possible to combine the variables using a 
mass-related scaling function. Snag density affects 
only the reproduction life requisite for the downy and 
Lewis' wood peckers but affects all three life requisites 
in the pileated woodpecker model. The remaining 13 
variables used in the 4 woodpecker models exhibit 
little synonymy among models. 

The barred and spotted owl models share a vari- 
able that describes the mean dbh of overstory trees, 
although the ranges over which values represent opti- 
mal or unsuitable habitat differ (Fig. 3F). In both 
models this variable is associated with the reproduc- 
tion life requisite. The remaining four variables are 
heterogeneous. 

In the passerine group there are four variables 
that are each common to two of the five models. 
Average height of overstory trees is shared in the black- 
capped chickadee and pine warbler models (Fig. 3G), 
although it affects the food life requisite in the former 
and the cover and reproduction life requisites in the 
latter. Suitability values for this variable are generally 
similar in the two models. The brown thrasher and 
black-capped chickadee models each have a variable 
that describes percent canopy cover of trees (Fig. 3H). 
In both cases this applies to the food life requisite, 
although in the brown thrasher it also influences 
cover and reproduction. The relation between this 
variable and suitability differs for the two species (Fig. 
3H). A variable describing average height of decidu- 
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ous shrubs plays a role in both the veery and the yellow 
warbler models (Fig. 31). It affects reproduction in 
both, and cover as well in the veery model. Suitability 
functions for this variable and for a variable describing 
percent deciduous crown cover (Fig. 3J) for these 
species are quite similar. The remaining 11 variables 
are heterogeneous. 

Thus, there are indeed some variables that are 
common to more than one species within groups of 
similar species, but in most cases the functions describ- 
ing the relation between the values of variables and 
habitat suitability differ among these species. Also, the 
life requisites influenced by these variables often dif- 
fer among species. Some models could be made simi- 
lar with minor adjustments (i.e., density of snags 
greater than 30.5 cm in diameter for Lewis' wood- 
pecker and density of snags greater than 38 cm in 

diameter for the pileated woodpecker; Table 4). Most 
of the models are built on unique sets of vari- 
ables, however. It is doubtful that an attempt to de- 
velop a single model as an indicator of habitat suitabil- 
ity for any one of these four groups of species (as was 
developed for riverine fishes by Bain and Robin- 
son (1988)) would be sufficiently successful to be 
worthwhile. 

In reviewing the variables used in these models, 
we also considered whether variables might be ex- 
pected to behave in an unstable fashion. Because the 
calculation of Habitat Units (HU) in HEP involves 
weighing the HSI values for particular cover types or 
habitats by their area, all the variables are sensitive to 
the definition of patch or cover types used for calculat- 
ing the separate suitability indices, as this definition 
will affect the area values used in the calculations. 
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There are no firm guidelines for identifying patch 
boundaries, yet the values of variables such as "percent 
of overstory that is aspen" will be greatly affected by the 
patch boundaries that are used. A second source of 
instability can be found in the commonly used defini- 
tion of the overstory as "trees at least 80% of the height 
of the tallest tree." At the extreme, one might imagine 
two areas that have been clearcut-logged, each of 
which has a regenerating canopy at about 2 m but one 
of which has a seed tree that has been left standing to 
encourage natural reseeding of the area. By the pre- 
ceding definition, the clearcut with the seed tree 
would have almost no overstory canopy, whereas the 
one without such a tree would be extremely dense. A 
third source of instability comes from vagueness in 
variable definition and the associated subjectivity that 
must be used by the investigators gathering the data. 
An example of this from the plains sharp-tailed grouse 
model is the variable "percent of cover types providing 
potential nest-brood cover." 

Variables for Which Variance is Important 

For most variables in these HSI models, the mean 
value for the variable in a given habitat type is used to 
calculate the suitability index. In some cases, however, 
the variance of values may be more informative than 
the mean. For example, the variance in such variables 
as "tree canopy volume per unit area" in the black- 
capped chickadee model, "average height of woody 
stems" in the ruffed grouse model, or "mean visual 
obstruction reading of residual vegetation" in the 
plains sharp-tailed grouse model may bear a closer 
relationship to habitat suitability than the mean values 
for these variables. Similarly, spatial dispersion may 
play an important role that is obscured by the use of 
summary totals or means in models. For instance, 
variables measuring densities of snags are found in 
several woodpecker models. Equivalent snag densities 
in two areas might produce different reproductive 
values, however, if the trees were clumped at less than 
minimum nest spacing in one area but not in the 
other. Variables that measure mean densities or canopy 
closure may all be affected by the pattern of spatial 
dispersion. The variance of measures or the disper- 
sion patterns recorded are sensitive to the intensity 
and distribution of sampling. Comparing such fea- 
tures among areas for a species, or between models 
that are based on different sampling intensities, will 
therefore yield inconclusive or incorrect results. In 
situations in which spatial distribution of vegetation is 

likely to be important, a measure of dispersion could 
be included directly in the models. Because variance 
depends on sample sizes, efforts should also be made 
to standardize or, at the very least, specify the intensity 
at which one should sample the variables used in HSI 
models. This would facilitate the use of variance mea- 
sures as variables in the models. 

Suitability Index Graphs and Families of Curves 

The suitability index (SI) graphs in the models we 
reviewed are based primarily on general descriptions 
of values of a given variable that represent unsuitable 
habitats, values associated with optimal suitability (SI 
= 1), and straight lines connecting these (the SI for 
percent conifers in the ruffed grouse model is an 
exception). A few of the variables, such as those de- 
scribing the suitability values for different types of 
crops (wild turkey, northern bobwhite), crop manage- 
mentpractices (wild turkey, northern bobwhite, Lewis' 
woodpecker), broad categories of soil moisture (north- 
ern bobwhite, veery), or tree canopy diversity (spotted 
owl) are categorical, with one suitability value as- 
signed for a given type of crop, crop management 
practice, soil moisture categoiy, or number of stories 
in the tree canopy. 

Although the responses of species to changes in 
habitat conditions are often nonlinear, the use of 
curved rather than straight lines to describe habitat- 
suitability functions in these models is probably not 
warranted by the level of accuracy of estimation of the 
functions or measurement of the variables. In a few 
situations, however, the functions could be constructed 
more carefully. For instance, in the black-capped 
chickadee model, suitability declines from 1.0 to 0.0 as 
the height of the overstory declines from >15 m to 0 m 

(Fig. 3G). It is unlikely that an overstory height of less 
than 1 m truly has a positive suitability value, however. 
One could similarly criticize the function describing 
the relation between average height of deciduous 
shrub canopy and suitability for the yellow warbler 
(Fig. 31) and the blue grouse, average height of herba- 
ceous canopy versus suitability for the veery, and 
perhaps other functions for which the behavior of the 
function might be expected to be inconsistent near a 
suitability value of zero. The general approach of the 
SI graphs is probably valid, in that the suitability of 
habitat to a species is likely to exhibit strong thresholds 
below which the habitat is usually unsuitable and 
above which further changes in habitat features make 
little difference. Considerable care must be taken in 
specifying these thresholds, however, as model predic- 
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tions are likely to be extremely sensitive to small 
differences in threshold levels. Where possible, the 
location and existence of habitat-response thresholds 
should be documented empirically. 

The Equations Used to Calculate HSI 

The variety of mathematical functions used to 
combine SI values in the models can be sorted into a 
few general types (Fig. 4). The choice of function can 
greatly influence the expected mean of HSI values 
produced by a given model, as well as the degree to 
which variables can be compensatory; that is, the 
degree to which an increase in one variable can substi- 
tute for a decrease in another in maintaining the same 
HSI level. 

The Product of Individual Suitability Index Values 

This operation allows individual variables to have 
a large potential influence on depressing overall HSI 
values. In the special case when all Si's except one are 
optimal, it produces a life requisite value that is equal 
to the lowest SI value. More often, the resulting life 
requisite value is lower than the lowest SI value. The. 
surface defined by this operation involving only two 
variables (Fig. 4A) decreases steeply with reductions in 
the value of either variable. Typically, one of the 
multipliers would be an SI representing distance, 
percent cover, or crop type and management. 

Addition Without Truncation 

One may add together SI values or functions 
thereof after first multiplying each by the same appro- 
priate fraction so that their sum cannot exceed 1.0. In 
this operation (Fig. 4B), it is assumed that the Si's do 
not modify each other and can fully compensate for 
each other at low suitability values but that neither 
variable can be compensatory when it has passed its 
optimal threshold. There is no compensation when 
the resulting sum is optimal (a value of 1). 

Mixed Addition and Truncation 

Alternatively, one may use additive functions in 
which one SI value is multiplied by a fraction so that it 
can never completely compensate for the other, while 
the other value can still reach a maximum of one and 
thus completely compensate for the first (Fig. 4C). 
This procedure assumes that there is some compensa- 
tion on the part of one variable and full compensation 
on the part of the other. The veery and sharp-tailed 
grouse models provide examples. In the veery model, 

herb cover can partly compensate for suboptimal 
shrub cover, whereas in the grouse model, grain crops 
can partly compensate for suboptimal shrubby areas. 
The asymmetry of the functions produces a surface of 
SI values that is unevenly truncated at values of 1.0. 

Addition With Truncation 

This function (Fig. 4D) assumes that, at values of 
individual Si's that add to <1.0, the Si's do not modify 
each other, as in the preceding addition without 
truncation function. When the Si's sum to >1.0, how- 
ever, habitat suitability is not changed by variation in 
one or both variables. The variables are completely 
compensatory; a low value of one can be completely 
compensated for by a high value of another. 

Root of a Product Equals the Number of Values 
Multiplied (Geometric mean) 

Examples of this function (Fig. 4E) would be the 
square root of a product of two Si's or the cube root of 
a product of three Si's. This operation assumes that 
Si's are partly compensatory, but the overall value is 
weighted by the smallest value. A zero value for any 
individual SI will lead to an overall zero value. If three 
Si's are equal, the overall SI will be the same as the 
individual values. 

Root of a Product Does Not Equal the Number of 
Values Multiplied 

Generally this function takes the form of a prod- 
uct of three Si's taken to the square root. Some idea of 
the nature of this function can be gathered from Fig. 
4F, although graphing constraints dictate that vari- 
ables 2 and 3 are identical in value and can therefore 
be expressed as Y2. In cases such as this, where the root 
is smaller than the number of Si's, the Si's are assumed 
to be partly compensatory and weighted by the small- 
est value. This weighing, however, is less than that in 
simple multiplication. Three equal values less than 
one and greater than zero will give a result that is lower 
than these values. 

The Product of a Squared SI Value and Another SI, 
All to the Cube Root 

This method is a special case of the geometric 
mean, in that the SI that is squared is given more 
weight than the other in determining the HSI (Fig 
4G). It contrasts with the simple case in which the root 
of a product equals the number of values multiplied. 
The Williamson's sapsucker model contains an ex- 
ample in which factors related to nesting are consid- 
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Z = X*Y B       Z =  ((1/2)*X +  (1/2)*Y) 

1.0 

0.5      X 

c    Z =  (X + (1/2)*Y) TRUNCATED 
TO   1.0 

D     Z =  (X+Y) TRUNCATED TO   1.0 

Fig. 4. Examples of the performance of different mathematical functions relating variables Xand Fto the output value of 
value. In A, 7. equals the product of two variables; B, addition without truncation; C, mixed addition and truncation; 
G, root of a squared SI value and another SI value, all to the cube root. 
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Z = (X*Y)**(1/2) F Z = (X*Y**2)**(1/2) 

0.5     x 

G       z = (X*Y**2)**(1/3) 

0.5     X 

Z. In Habitat Suitability Index (HSI) models, X and Y might be two Suitability Index (SI) values, Z the resulting HSI 
D, addition with truncation; E, geometric mean; F, root of a product does not equal the number of values multiplied; 



18 FISH AND WILDLIFE RESEARCH 8 

ered more important than canopy cover. This method 
is similar to the simple case in that, when the values of 
both Si's are the same, the final HSI will have that 
value. 

Various functions have been used to combine 
variables into HSI values in the models we considered. 
For each, some justification has been or could be 
provided (see the reports we reviewed, Appendix). 
The array of functions used, however, makes it ex- 
tremely difficult to consolidate existing models or 
functions into more general, multispecies models. 
Perhaps more importantly, some of the functions 
behave in ways that are not intuitively obvious—the 
response surface of HSI values generated by various 
combinations of the individual SI values for different 
situations is not flat or symmetrical. This means that 
application of the model in situations at different 
positions on the plane may yield qualitatively different 
results (e.g., compare the points on the plane of Fig. 
4 C). It is not always certain that this is what the framers 
of the models intended. The output of some functions 
is skewed toward low or high values when compared 
with others. For instance, the distributions of the 
multiplicative functions (Fig. 4A) are skewed toward 
lower values than those of the additive functions (Fig. 
4D), even though both functions have the same range 
of output (0 to 1). 

Model Assumptions 

All models contain assumptions; this is a neces- 
sary feature of the simplification that accompanies any 
modeling effort. An evaluation of models must con- 
sider both the operational aspects of models (e.g., how 
SI values are combined in various functions, how life 
requisites interrelate) and the underlying assump- 
tions of the models. Evaluating the robustness or 
sensitivity of a model involves assessing the likelihood 
that these assumptions are correct, or determining 
the effects on model predictions should they be in- 
valid. In order to do this, the model assumptions must 
be clearly stated. 

In the reports we reviewed, the authors specified 
many of the assumptions involved in the model, espe- 
cially with regard to specific variables or SI graphs. If 
a particular variable is weighted more heavily than 
another in the calculation of an HSI value, this is 
usually clearly stated and justified. However, as the 
equations used to combine SI values into HSI's be- 
come more complex (e.g. additive, additive with trun- 
cation, multiplicative, roots of multiplicative, combi- 

nations of these), the assumptions underlying the 
operations become less obvious and the functions 
themselves become even more distantly related to 
actual data. The assumptions regarding possible com- 
pensatory relations among variables are especially 
important. Because the HSI equations combine indi- 
vidual SI functions in complex ways, any errors in 
specifying the individual SI graphs (or in the assump- 
tions underlying these graphs) will be amplified. This 
problem may be especially severe when compensatory 
relations are included. Moreover, when qualitatively 
different attributes of the environment are converted 
to dimensionless SI values that are then combined to 
derive an HSI value, the qualitative differences be- 
tween the features are no longer apparent. They are 
nonetheless still contained within the derived index. 
One must assume that these differences, and the 
differences in measurement scales used to determine 
variable states in a particular situation are, in fact, 
standardized in an equivalent (and usually linear) way 
in the SI functions. 

Some assumptions are basic notjust to individual 
models but to the entire HEP modeling approach. A 
basic assumption is that the life requisites addressed in 
a model do indeed include those factors limiting the 
species, but the approach fails to recognize that the 
different life requisites are related to one another in 
different ways. Is food directly limiting (e.g., in winter) 
or limiting through its effects on another life requisite, 
reproduction (e.g., breeding season)? The models 
also assume that the measured variables do indeed 
contribute directly to the limiting effects of particular 
life requisites, or that they are highly correlated with 
other, unmeasured variables that do have such direct 
effects. Furthermore, there are boundaries to the 
characteristics of habitats in which these assumptions 
will hold. These boundaries must be made explicit, 
and where they might be exceeded within the model's 
applicable geographic areas and habitat types, they 
should be identified. Obviously, the assumptions made 
about limiting factors and their relations may only 
apply within the geographical and environmental 
ranges specified for a particular model. 

The form of most SI graphs carries the additional 
assumption that the relation of HSI to limitation or 
carrying capacity is linear or can be directly trans- 
formed to a linear function. Because HSI values are 
calculated (at least in principle) as the ratio of an 
observed or predicted habitat suitability condition to 
some standard of comparison (the "optimum"), index 
values are constrained to vary between 0 and 1.0. This 
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approach has the advantage of standardizing mea- 
sures for quite different variables with different ranges 
of absolute values. The difficulty (Farmer, personal 
communication) is that "optimum" may be defined in 
different ways. Does this value represent the best 
habitat condition in a theoretically ideal situation 
(which may never actually occur), or the best condi- 
tion actually observed? Is this optimum defined with 
reference to the entire geographical range of a species 
or in relation to the region encompassed by a particu- 
lar model? Assumptions about the specification of 
"optimum" obviously have a major influence on the SI 
values derived for a given situation. Differences in this 
assumption among models may make model compari- 
sons or amalgamation impossible. 

The approach used in HEP of deriving SI values 
for habitat types, converting these to HU values by 
adjusting for the areas of the habitat types, and then 
adding the HU values to obtain an overall suitability 
index for an area also contains several important 
assumptions: (1) Above the minimal area require- 
ment of a species, area has no direct effects on the 
suitability per unit area. (2) The same relations hold 
between carrying capacity or limitation and particular 
habitat variables at small, local scales and at broad, 
regional scales. Thus, there is no scale-dependence of 
these relations (see Wiens 1989c). (3) The area-based 
conversion from HSI values to HU values is symmetri- 
cal (e.g., 50 ha of 0.5 HSI habitat is equivalent to 100 
ha of 0.25 HSI habitat). (4) Within the study area, the 
landscape context of most patches does not influence 
their suitability functions. The function portrayed in 
an SI graph for a particular cover type or series of 
habitats therefore does not change as a result of what 
other cover types are adjacent to the habitat patches of 
interest. (5) The landscape effects do not change as a 
function of area. (6) The landscape context outside 
the study area has no influence on suitability. 

Validation of Models 

How well a model provides accurate predictions 
of the effects of habitat change on species abundance 
or productivity depends on how closely its assump- 
tions are met, and how effectively and consistently the 
model performs in combining variables in the desired 
fashion. There are two general steps. First, the consis- 
tency of internal model operations must be estab- 
lished. This may be done by matching the model 
output to a given set of data by using those data to 

specify the model parameters to begin with. This step 
is usually referred to as model verification (Horn et al. 
1989). In contrast, model validation usually involves 
matching the model output to a new set of data that 
was not used to frame the model or specify its param- 
eters. 

Model Assumptions and Functions 

The potential source of the largest magnitude 
errors in HSI models is in violating assumptions re- 
garding the factors that limit population density and 
productivity. There are limits to the range of habitats 
in which such assumptions will hold. These limits 
should be explicit, and situations where they might be 
exceeded within the model's applicable geographic 
area and habitat types should be identified. This ap- 
proach defines the limits to extrapolation of the model 
predictions. For instance, reproduction is assumed to 
be limiting in the barred owl and yellow warbler 
models. Under certain circumstances, however, other 
factors, such as food availability or overwinter survival, 
could be more important. What are these conditions? 
In the downy woodpecker, black-capped chickadee, 
Lewis' woodpecker , and several galliform models, 
HSI is equal to the lowest of several SI values for 
different life requisites. Do these models adequately 
describe conditions under which one life requisite 
becomes more limiting than another, such that we can 
now ignore variables related to the nonlimiting life 
requisite? Such questions are rarely considered in HSI 
models. 

The way that final HSI values are calculated from 
the individual Si's is a more common source of error 
than violating limiting-factor assumptions. Because 
this calculation involves the mathematical aggrega- 
tion of several SI values, errors contained in poorly 
defined individual SI functions are compounded. 
Therefore, validation efforts should also be focused 
on the basis for combining SI values into the final HSI, 
and the associated assumptions that relate to the 
weighing and compensatory characteristics of Si's. 

How should these aspects of the models be vali- 
dated? Validating the limiting factor assumptions would 
be more profitably tested through manipulative field 
experiments than through descriptive monitoring. 
Similar but more complex manipulative experiments 
could be used to test the accuracy of functions used to 
combine Si's. Such field experiments are perhaps 
most in keeping with the eventual goal of using the 
models to make predictions about field situations, but 
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they are also time-consuming and expensive. We em- 
phasize experimental approaches largely because more 
straightforward descriptive tests of the accuracy of 
model predictions are less likely to be productive. If 
predictions fail to be met in observational field stud- 
ies, it may be difficult to determine which aspects of 
the model are at fault. The difficulty of identifying the 
sources of model failure increases dramatically as 
models incorporate more variables in more complex 
functions or as the scale of application is enlarged. 
The most informative field validation tests are likely to 
be those in which population survival and reproduc- 
tion are monitored on paired experimental and con- 
trol sites in a range of habitats that spans the habitat 
variation to which the model applies. By manipulating 
single habitat features (such as canopy density or 
number of snags) or combinations of features in a 
balanced design, one may determine the relations of 
such variables to survival or reproductive rates. Of 
course, there are difficulties in designing and inter- 
preting field experiments (Wiens 1989a, 1989b), and 
well-planned comparative observations on habitat gra- 
dients may also help to validate model performance. 

Sensitivity Tests 

Another approach to validation that is less diffi- 
cult and expensive, but perhaps also less realistic, is to 
conduct sensitivity tests on model components and 
their interactions. Do small errors in estimating or 
measuring a particular variable in the field have major 
effects on model output? Are model predictions largely 
insensitive to considerable variations in the values of 
other parameters or in the precise shapes of certain SI 
graphs? 

The results of sensitivity tests may provide valu- 
able guidance in designing further field studies or 
field validation tests; at the least, they indicate which 
input parameters must be estimated most accurately 
and which require only relatively coarse measure- 
ment. Sensitivity tests of this sort reveal which features 
of model operations may be affected by small changes 
in model functions, variable values, or the ways in 
which variables are combined. However, they are 
generally not well suited to validating some of the 
more general assumptions underlying the model. For 
example, to evaluate the assumptions that food is 
limiting to a particular species at a particular time, or 
that the HSI values obtained really do index individual 
and population performance in some way, requires 
direct field studies or analysis by other models specifi- 
cally designed to explore such linkages. Sensitivity 

testing will only determine relations within the speci- 
fied structure of a model. Such tests can therefore 
diagnose assumptions that are contained within the 
model structure, but they cannot address assumptions 
that are part of the conceptual foundation of the 
model or are contained in the methods used to obtain 
data, which lie outside of the model. For example, one 
might construct a model of population response to 
habitat change based on logistic population growth. 
The performance of the response model could be 
tested by sensitivity analyses, but the assumptions con- 
tained in the logistic model itself would remain 
unexamined. All HSI models (indeed, any models) 
are built on such external assumptions. 

The influences of various weighing functions in 
the equations used to combine SI values into an HSI 
(e.g., Fig. 4) may also be explored by sensitivity tests. 
By systematically varying these functions as well as the 
input values for specific parameters over a range of 
conditions, while holding all other aspects of the 
model constant, the sensitivity of model predictions 
may be determined. A similar approach may be used 
to assess model sensitivity to variations in combina- 
tions of parameters. The variations in variable input 
values, of course, affect model predictions only as they 
are standardized by the SI graphical functions, and the 
form of these functions may therefore be especially 
critical. Because virtually all of these functions are 
linear between specified lower and upper thresholds, 
the location of the thresholds may be the most impor- 
tant feature of these functions (Bain and Robinson 
1988). The sensitivity of model predictions to the SI 
functions might be most directly assessed by systemati- 
cally varying these thresholds for specific SI functions 
independently and examining the effects on model 
output. 

Ultimately, field validations are necessary to de- 
termine whether or not a model functions as desired 
and to test critical model assumptions. Such field tests 
should be preceded by model sensitivity analyses to 
determine which aspects of the model should be 
targeted for field tests and how the field studies should 
be designed. 

Model Predictions and Their Extrapolation 

Validation must ultimately be judged by testing 
the accuracy of model output. It is therefore impera- 
tive that the model output be directly measurable. If 
model output is related to unobservable states, such as 
potential carrying capacity for a population or maxi- 
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mum habitat quality, it will be impossible to evaluate 
model performance, no matter how accurate the 
modeling procedure. Validations of models, whether 
accomplished by sensitivity testing or field manipula- 
tions or a combination of these approaches, will tell 
whether or not the model works, but not whether the 
underlying mechanisms are sound. If they are not, the 
model may have limited capacity to extrapolate be- 
yond the boundaries of the data used to formulate the 
predictions. An experimental validation of model 
predictions in a forest area of a few hundred hectares 
may not necessarily hold true when extended to re- 
gions of several thousand square kilometers. A model 
must be developed, tested, and applied within the 
same range of space-time scales. Of course, it is diffi- 
cult to conduct experimental validations of large-scale 
models. In other situations (e.g., threatened or endan- 
gered species, fragile habitats), experimentation is 
precluded on legal and moral grounds. This does not 
mean that development of models for such situations 
is senseless by any means, but it does mean that 
approaches to validation will differ depending on the 
scale and circumstances of model application. 

The Use of Indicator Species Models 

Clearly, there are many difficulties to be faced if 
one wishes to combine existing sets of HSI models, 
such as those for forest birds, into more general, 
multispecies HSI models. One alternative route to 
model generality might be through recognizing cer- 
tain species as "key" or "indicator" species and then 
using HSI models of these species to monitor the 
status of wildlife-habitat relations at a broader level. 
This approach has a long history in wildlife manage- 
ment (e.g., Leopold 1933) and other areas (reviewed 
by Morrison 1985), and it is in fact implicit in the HSI 
modeling philosophy. Whether or not it is valid in a 
given situation depends on two considerations: (1) 
Are the indicator species really representative of a 
larger suite of species of interest, so that changes in 
their populations may be used to infer more general 
wildlife responses to habitat changes (e.g., Block et al. 
1986)? (2) What does a change in population density 
or productivity of an indicator species really indicate? 
The most frequently mentioned examples of indica- 
tor species (desert quail and certain shrub species; 
peregrines and pesticides) involve situations in which 
changes in the distribution or abundance of the spe- 
cies can be traced to specific environmental changes. 
More often, variations in population dynamics and 

productivity of species result from an array of interact- 
ing factors; identification of the factor responsible for 
changes in population attributes may be problematic 
(Temple and Wiens 1989). This problem, of course, is 
not unique to indicator species, but its effects may 
produce particularly severe problems when one at- 
tempts to use such species as a basis for more general 
conclusions. If these two considerations can be re- 
solved, the indicator-species approach may be a useful 
route to generality. No departures from the current 
single-species HSI modeling approach are then re- 
quired. 

Developing General Models of 
Wildlife-habitat Relations 

Attempts to develop general models of complex 
ecological systems are plagued by two problems. If one 
attempts to capture the complexity of the system in the 
model, there will be a great many parameters in the 
model. Errors in estimating parameter values multi- 
ply, and the model rapidly becomes unreliable (Pimm 
and Gilpin 1989). Attempts to simplify such models, 
on the other hand, may lead to a neglect of important 
parameters or parameter interactions. 

These problems have given rise to two approaches 
to developing general models. The "bottom-up" 
method takes a series of detailed, specific models 
(such as existing HSI models) and aggregates them 
into a larger, general model. The "top-down" ap- 
proach begins with a series of general statements or 
propositions about the system at the broadest level of 
analysis and incorporates more specific detail into the 
model, as it is needed, to address specific situations or 
objectives. In theory, the bottom-up approach has the 
advantage of building a model on known functions 
and mechanisms, which are validated independently. 
The top-down approach has the advantage of includ- 
ing only presumably relevant detail, but there is also a 
danger of developing a model that makes accurate 
predictions that may be based on general correlations 
rather than on underlying biological mechanisms. 
Such models often fail when they are extended much 
beyond the data or situations used in their develop- 
ment. 

Evaluation of the Bottom-up Approach 

The bottom-up approach is typified by Bain and 
Robinson's (1988) analysis of 30 riverine fish HSI 
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models. The approach involved 1) identifying the 
general components (life requisites, in this case) shared 
by most of the models; 2) developing a list of variables 
used in common for these components; 3) developing 
SI graphs for each variable by averaging scales and 
break points or thresholds for graphs from the specific 
models; this approach specifies minimum and maxi- 
mum average suitability; 4) developing general com- 
putational rules and equations by identifying the most 
commonly used mathematical functions in the spe- 
cific models; and 5) integrating these procedures to 
produce an overall HSI model. These steps are a 
logical approach to the problem of model aggrega- 
tion. Bain and Robinson followed these procedures 
carefully and provided a detailed description of their 
analyses. When the environment occupied by a group 
of species imposes similar, strong limiting effects on 
their populations, the single-species models may share 
many features in common and this aggregative ap- 
proach may be possible. These environmental condi- 
tions generally apply for fish in stream systems. Our 
analysis, however, shows that they apply rather poorly 
to birds occupying forested habitats. For these species, 
the differences among the models are considerably 
greater than their similarities, which makes it difficult 
(but not impossible) to follow the aggregation proto- 
col outlined by Bain and Robinson (1988). 

We see some areas of more general concern with 
this bottom-up approach. The following discussion is 
not a specific criticism or evaluation of the Bain- 
Robinson analysis, but rather is intended to empha- 
size these more general aspects of the bottom-up 
approach. 

Unique Variables 

This approach produces an "average" model. In 
so doing, it ignores key features or variables that may 
influence some but not most species. Thus, if unique 
or uncommon variables, components, or equation 
functions are omitted in a general model, one may fail 
to consider properly the species for which these are 
important. The model then applies to a common or 
average species. But frequently it is the a typical species 
that are endangered or particularly sensitive to habitat 
perturbations. Moreover, unique or uncommon vari- 
ables may often be particularly strong in their limiting 
effects on certain species. Because the HSI approach 
is based on a "limiting factor" philosophy, not consid- 
ering these variables may lead to incorrect predic- 
tions. 

Variance 

In averaging SI functions or equations, the mean 
values across the species are emphasized but the vari- 
ance is ignored. The mean, of course, is sensitive to 
only those species that are included in the aggregate 
functions. Inclusion or deletion of one or a few species 
may therefore change the average functions dramati- 
cally. Furthermore, variance is what determines the 
confidence with which one can apply model predic- 
tions, and its omission in a multispecies model may be 
particularly important. 

Insensitivity to Change 

HSI models were developed primarily to assess 
the potential consequences of habitat changes. Thus, 
the variables included in the model should be those 
that are most sensitive to changes. If commonly mea- 
sured variables, components, or functions are used, 
these may be particularly insensitive to change or have 
broad thresholds on SI graphs. Sensitivity analyses of 
individual models would help to resolve the potential 
severity of this problem. 

Scale 

Amalgamating variables and functions across spe- 
cies requires that the assumption that these variables 
and functions have similar degrees of scale depen- 
dency in time and space for the different species. If 
one species responds to shrub cover, say, on a scale of 
square meters and another responds at a scale of 
square kilometers, a function combining these two 
species may make little sense. Such differences in 
scales are a major source of heterogeneity in the 
habitat-performance relations, although the severity 
of this problem depends on the particular mix of 
scales that is aggregated. One consequence is that 
general models developed in this way may be sensitive 
to the particular models used in their construction. 
Steps might be taken to transform the functions and 
variables to a common scale, but no one yet knows how 
to do this (Wiens 1989c). 

The Optimum SI Value 

Much the same concern applies to the practice of 
basing the functions on SI graphs in which "optimum" 
= 1.0. What "optimum" means may differ widely among 
species for a particular variable and may depend on 
the range of circumstances considered. This problem 
is especially likely to occur if the models are based on 
an empirical rather than a theoretical optimum. 
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Heterogeneity of Curves 

Different SI graphs reflect qualitatively different 
relations. If several graphs are combined to produce 
average SI graphs, it is important that the graphs 
portray the same thing in the same way. If the SI graphs 
depict different response variables measured in differ- 
ent units (with different optima), combining them 
may produce average curves that have no meaning. 
Furthermore, averaging of curves that have different 
response thresholds will produce new thresholds that 
are misleading artifacts. As Terrell and Nickum (1984) 
noted, "What the individual SI curves represent varies 
depending on how the curve was developed, the qual- 
ity and quantity of the data base, and the type of 
response used in development of the curves. When the 
curves represent different responses, it is unlikely that 
a uniform method of aggregating curves to predict a 
single response exists." 

Heterogeneity of Habitat Units Among Species 

Just as there is likely to be heterogeneity among 
the SI graphs for different species, the ways in which 
HSI values are derived and then converted into Habi- 
tat Units (HU) may vary among species. Because HU 
values are derived in different ways, they are not 
necessarily equivalent for the different species to be 
aggregated in a general model. The expression of HU 
values as, for example, numbers per unit area may give 
the appearance that HU values are automatically nor- 
malized among species. Because the SI functions for 
different species are scaled differently with respect to 
area, such normalization often does not occur. 

Cover-type Standardization 

Although the nomenclature of cover types used 
in different models may be standardized, the ways in 
which these cover types are actually defined in the 
field may differ considerably among investigators. 
How cover types are differentiated or lumped to- 
gether may also depend on the geographical scale of 
the analysis. If cover types are subdivided more finely 
for one species than for another, the aggregation of 
the models for these species will give misleading re- 
sults unless the differences in cover-type specifications 
are somehow standardized. More important, species 
undoubtedly differ in the scales on which they per- 
ceive cover types or patches of habitat. What repre- 
sents several different habitat patches to a small spe- 
cies may be averaged together as a single habitat patch 
when perceived by a larger species. Habitat suitability 

of cover types may therefore vary dramatically among 
species. Imposing on the species an average cover-type 
definition, or one that is derived on the basis of human 
perceptions of habitat patches, may produce nonsen- 
sical results when the species are aggregated into a 
single general model. Because management is applied 
at the scale of landscape elements, it is appropriate to 
define cover types at this scale. It is also important, 
however, to consider how applicable such scaling may 
be to the organisms of interest and to attempt to 
rescale cover-type definitions if necessary. 

A related problem is that of nonequivalence 
among cover-type designations. When the cover types 
defined for management or mapping differ in their 
levels of inclusiveness, comparisons among them are 
difficult. Cover types may also differ substantially in 
the extent to which averaging of values submerges 
important features of habitat or wildlife characteris- 
tics. Cover types such as tundra and cottonwood- 
willow riparian, for example, are scarcely equivalent in 
the range of habitat variation they encompass. 

The severity of these problems in developing a 
general model by means of a bottom-up approach 
depends on the heterogeneity of the models being 
aggregated. If the models are generally similar in 
variable specifications, SI functions, and HSI equa- 
tions, the amalgamation may proceed relatively 
smoothly, although the problems associated with scale 
are likely to remain. For more disparate models, such 
as the set of forest bird models, the difficulties seem 
formidable. Nonetheless, there are some steps that 
may improve general models derived using a bottom- 
up approach. 

An averaging approach to amalgamating models 
is unlikely to be very useful if it is based entirely on 
means. But the bottom-up approach may be improved 
by explicitly considering variance in variable mea- 
sures, SI graphs, and component relations. The data 
base underlying these parameters is often very coarse, 
so it is not likely that accurate statistical variance 
measures will exist for many model features, and it 
may not be an efficient use of field time to attempt to 
collect the observations that would yield variance 
measures. Instead, computer simulations may be used 
to establish ad hoc confidence limits on estimated 
values. SI graphs, for example, could be constructed 
so that they portrayed the average, expected relation, 
as well as some form of outer limits on the response 
thresholds and function (Fig. 5A). One might system- 
atically vary individual variable values over arbitrary 
ranges to determine model sensitivity to parameter 
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Fig. 5. A. Suitability Index (SI) graph in which variance in the SI function has been included (shaded area). B. One way of 
estimating the probability that a parameter (e.g., habitat SI) will be of a certain value for a given value of the habitat 
variable. Such a distribution maybe used to obtain a distribution of input values for Monte Carlo computer simulations. 

variation, as Bain and Robinson (1988) did. Perhaps a 
better way to simulate confidence limits is by Monte 
Carlo simulations using specified probability func- 
tions for variable values between specified extremes 
(e.g., Ford et al. 1982; Wiens et al. 1985; Fig. 5B). 
Ideally, such simulations should be conducted for 
individual model parameters and then for individual 
models before their amalgamation. If one weights 
variables on the basis of intuitivejudgments, sensitivity 
tests should be conducted to determine the effects of 
the weighings on the HSI values derived from the 
model. The confidence intervals required for deci- 
sions by management or assessment of effects are 
often wider than those used in scientific studies (Terrell 
and Nickum 1984); nonetheless, attempts should be 
made to establish the robustness of model predic- 
tions. Such considerations are especially important if 
model predictions with large potential errors are be- 
ing used to develop cost-benefit assessments for habi- 
tat management. 

These suggested steps may improve the useful- 
ness of specific models, but they do not solve the 
problem of linking together models that contain 
quite different sets of variables, SI graphs, or equa- 
tions. In some situations, simulations may indicate 
that variables may be combined in various ways to 
enhance their uniformity among models, although 
scaling differences are still likely to remain. Of course, 
the differences among the models are consequences 
of the differing objectives of investigators in develop- 

ing the models and the differing data bases available 
to them. Because the models were not developed with 
the intention of subsequent aggregation, it should not 
be surprising that they do not mesh together easily. In 
view of the difficulties just described, however, the 
approach of developing general habitat models by a 
bottom-up amalgamation of existing HSI models does 
not seem to be profitable or realistic unless the models 
are similar in their structure and specifications. 

The Top-down Approach 

An alternative to the bottom-up approach is to 
begin with a general model and build in the detail that 
is required by the nature of the ecological system 
(species, life functions, cover types) and modeling 
objectives. One might develop a guild model, for 
example, by first defining the general cover types and 
regions in which the model is intended to apply, then 
defining a guild or series of guilds (determined on the 
basis of objective criteria), and then developing state- 
ments of guild life requisites, SI graphs, and equations 
that would apply generally to these functionally de- 
fined groupings, rather than being averages across the 
component species. If scaling functions are incorpo- 
rated into the definition of guilds, it might alleviate 
some of the difficulties of combining functions for 
species that scale their environments differently. 

Such a hierarchical approach has two distinct 
advantages. First, by beginning at a general level (say, 



FOREST BIRD HABITAT SUITABILITY MODELS        25 

the community of birds occupying a general habitat 
type such as forest) and then subdividing this accord- 
ing to major differences among groups (into, say, 
guilds occupying subsets of the forest cover types), one 
adds detail only so far as needed to portray critical 
features of the differentiated groups, with reference 
to the particular management objectives of interest. 
Of course, if this subdivision is carried out to the 
species level, the advantage of the top-down approach 
is lost. Second, because one begins with groupings of 
species that are progressively subdivided, critical inter- 
actions among sets or subsets of species may be re- 
tained as explicit features of the model structure. 
Species interactions are generally not considered in 
the aggregation protocol of a bottom-up approach. 

Another advantage of a top-down approach is the 
compatibility of such hierarchically structured models 
with GIS-based habitat analysis (e.g., Scott et al. 1987). 
When moving from general to more specific models, 
the spatial scale can be varied in a way that retains 
known relations with cover-type map data. The map 
images may then be varied in concert with the HSI 
models in simulations to project the possible conse- 
quences of habitat or landscape modifications on 
model predictions. 

There are also difficulties with a top-down ap- 
proach to developing general models, however. Sev- 
eral of these (unique variables, scale, the "optimum" 
SI value, heterogeneity of habitat units among spe- 
cies) are the same as those characterizing the bottom- 
up approach; others are more evident in the top-down 
approach. 

Community or Guild Definition 

The bottom-up approach begins with the species 
and aggregates as far as compatibility of the species- 
level models permits. In the top-down approach, one 
must specify the most general level at the outset. This 
level is arbitrary, based on the objectives of the model- 
ing exercise. For some purposes, a broadly defined 
community may be the focus, whereas for others a 
more narrowly defined community or series of guilds, 
or perhaps a single guild, may be more appropriate. 
Whatever the level, the criteria used to define it must 
be clearly specified. This is especially true for guilds, 
which may be defined using a variety of procedures 
and criteria, some more objective than others (Jaksic 
1981; Wiens 1989a). The definition of the community 
or guild should be accompanied by a statement of the 
time and space scales of model application. For ex- 
ample, the wildlife-habitat relations of organisms may 

be quite different when considered over a month in 
summer, the entire summer, the entire year, or a 
sequence of years. Patterns that are evident at a local 
spatial scale may disappear or even be reversed at a 
broader, regional scale (e.g., Wiens et al. 1987). All of 
these definitional decisions are more equivocal than 
those involved in species-level models. 

Output Parameters 

In traditional HSI models, some measure of 
species or population performance (e.g., density, bio- 
mass, productivity) is the criterion of interest pre- 
dicted by the models. By contrast, with guild or com- 
munity models such measures may be less relevant to 
management objectives. Species richness or diversity 
is often identified as the most important attribute of 
communities, but other features (e.g., guild composi- 
tion, food-web complexity, total community niche 
space, species packing) may also be relevant to par- 
ticular objectives. Guild structure, for example, may 
provide a more sensitive indicator of overall commu- 
nity response to habitat changes than species richness 
alone, which may not change because invading or 
edge species can substitute for other species more 
characteristic of the habitats. Which measures are 
most appropriate depends on the specific manage- 
ment objectives, so these objectives must be clearly 
specified at the outset of any modeling exercise. 

Area Effects 

In traditional HEP models, HSI values are as- 
sumed to be independent of area when HU values 
are calculated. Area, however, is an important com- 
ponent of community-level attributes such as species 
richness. As Schroeder (1986) observed, multiplying 
an HSI that contains area effects by habitat area to 
derive HU values has the effect of double-counting 
area and is not a logical mathematical operation. This 
operational problem may be especially severe in mod- 
els that take the community as the general frame of 
reference because many community-level features are 
area-dependent. 

System Openness 

The capacity of any model to produce accurate 
predictions of species or community features from 
specified input variables depends on how much the 
features of interest are influenced by those variables 
alone. The boundaries imposed on the system in space 
and time (e.g., a particular location during the breed- 
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ing season) are usually assumed to include all of these 
influential or limiting variables. If a system is open to 
external influences (i.e., it has been incorrectly 
bounded), the factors that actually influence popula- 
tion or community dynamics may not be included in 
the model and the model predictions may therefore 
be of little value. With a single species as the focus, this 
problem may be reduced by careful design and plan- 
ning. In multispecies assemblages such as guilds or 
communities, however, the number of species may be 
large. Because these species probably operate on dif- 
ferent scales in space and time (e.g., residents versus 
migrants, short-lived versus long-lived), the likelihood 
that the guild or community features will be influ- 
enced by factors beyond the specified boundaries 
increases dramatically as species number and variety 
increase. 

A Logical Foundation for 
Model Development 

A major difficulty in developing species-specific 
HSI models, or bottom-up or top-down general mod- 
els, is in specifying the variables that may influence a 
feature of interest (e.g., a life requisite) and interrelat- 
ing these correctly. The envirogram approach of 
Andrewartha and Birch (1984) andNiven (1987,1989) 
offers a way to develop a logical foundation for speci- 
fying and relating variables in models. Using formal 
logic, one can distinguish environmental features that 
influence organisms directly—elements of the "cen- 
trum"—from those that influence organisms indi- 
rectly, by way of the centrum; these are elements of the 
"web." The centrum comprises four classes of environ- 
mental factors, distinguished by the kinds of effect 
they have on organisms (positive or negative) and the 
reciprocal effects of the organisms on those factors 
(positive, negative, or neutral). Thus, resources are 
defined as objects or factors that have a positive influ- 
ence on the organism and that are decreased or 
unchanged by the actions of the organisms. Mates are 
defined by a positive-positive set of influences, whereas 
predators are objects that have negative effects on the 
organism and are in turn positively influenced (e.g., 
nourished). Malentities are factors that negatively 
influence the organism but do not in turn benefit 
from the interaction (e.g., drought). Such distinctions 
may seem clear and somewhat trivial, but they func- 
tion to classify environmental factors formally accord- 
ing to the specific form of their effects and conse- 

quences. They represent an alternative categorization 
to life requisites that may avoid problems in defining 
logical relations among the latter. 

An envirogram is simply a diagram of the logical 
formulations that link components of the web and the 
centrum to the well-being of organisms over a speci- 
fied time and area. As an example, we have developed 
an envirogram for the pileated woodpecker (Fig. 6). 
Because this envirogram is based only on the informa- 
tion contained in the HSI model report for this spe- 
cies, it contains only two of the four components of the 
centrum: resources and predators. A complete 
envirogram for this species would include other fac- 
tors related to the mates and malentities components 
of the centrum. There are clear differences between 
the logical and structural interrelations of factors 
influencing this species when portrayed by the 
envirogram compared with the descriptive categories 
in the HSI model (Fig. 6). In the HSI model, measures 
relating to snags, tree stumps, and logs, trees, and tree 
canopy collectively influence the life requisite of food 
plus cover plus reproduction. In the envirogram, these 
factors are interrelated in a logical fashion through a 
hierarchy of direct and indirect effects. Thus, one sees 
that water availability influences the growth and oc- 
currence of large, live trees, which in turn produce 
snags (when they die) and logs and stumps (when they 
fall). Logs and stumps are important to the woodpeck- 
ers by providing a resource, insect food. The water —> 
large live tree—» snag linkage is also important in 
providing another resource, nest sites (which, in the 
envirogram terminology, are regarded as a token; 
Andrewartha and Birch 1984). The same linkage also 
relates to the predator portion of the centrum, in that 
snags provide roosting sites that afford woodpeckers 
protection from predators. 

We see several advantages to the envirogram 
approach for specifying wildlife-habitat interrelations: 
1) it provides a logically consistent ordering of rela- 
tions among environmental factors, as defined by the 
nature of their influences on organisms; 2) these 
relations can be supported by formal logical expres- 
sions (Niven 1987); 3) it provides a standard frame- 
work that can be applied to all species, facilitating 
model consolidation; 4 ) by arranging environmental 
factors according to the form and directness of their 
influences, attention can be focused on especially 
important sets of variables ; and 5) in the process of 
constructing an envirogram, attention may be drawn 
to variables that might otherwise be overlooked. 

The envirogram and the logical structure that 
underpins it represent a way of portraying relations 
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Habitat variable 

Percent tree canopy 
closure   

Life reoulslte Cover types 

Number of trees > 51 cm 
(20 Inches) dbh/0.4 ha 
(1.0 acre)  

Number of tree stumps 
> 0.3 m (1 ft) 1n 
height and > 18 cm 
(7 Inches) diameter 
and/or logs > 18 cm 
(7 Inches) diameter/ 
0.4 ha (1.0 acre).— 

Number of snags > 38 cm 
(15 Inches) dbh/0.4 ha 
(1.0 acre) (eastern 
portion of range only). 

Average dbh of snags 
> 38 cm (15 Inches) 
dbh (eastern portion 
of range only).     _J 

Number of snags > 51 cm 
(20 Inches) dbh/0.4 ha 
(1.0 acre) (western 
portion of range only). 

Average dbh of snags 
> 51 cm (20 Inches) 
dbh (western portion 
of range only).     J 

}Food/Cover/— 
ft Reproduction 

I Evergreen Forest 
I Deciduous Forest 

-( Evergreen Forested 
\  Wetland 

Deciduous Forested 
^ Wetland 

-HSI 

WEB 
JZX 

CENTRUM 

RESOURCES 

Fig. 6. A. Relations among variables contained in the Habitat Suitability Index (HSI) model for pileated woodpeckers, as 
contained in the HSI model structure. B. An envirogram based on the same information, in which the relations among 
variables are portrayed in a more logical fashion. 
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among variables influencing organisms. An envirogram 
does not specify the quantitative state of these vari- 
ables (e.g., specific size of snags) or area-dependent 
relations such as density. The approach provides a 
framework within which such states may be specified, 
however. We believe that the approach has potential 
as a way of placing the structure of HSI models on a 
firmer and more consistent logical foundation. Al- 
though our example is focused on a single species, 
multiple envirograms for sets of species that occur 
together could be constructed to show the common 
elements useful for developing logically derived 
multispecies habitat-response models. 

future model development. The present HSI models 
generally ignore such effects, and bottom-up attempts 
to develop more general models based on these single- 
species models would also ignore landscape effects. 
Top-down models can consider landscape effects, but 
only if they are included at the outset of model design. 
Sensitivity tests cannot be used to measure such effects 
with the existing models because the models lack 
functions that interrelate cover types or assess area 
effects. Despite the scarcity of empirical data to use in 
landscape mosaic models, some of the existing con- 
cepts and ideas of landscape ecology could be synthe- 
sized specifically to apply to modeling wildlife habitat 
relations. 

The Importance of 
Habitat Landscapes 

In nature, cover types occur in patches that are 
interspersed among patches of other types. The over- 
all landscape is a complex mosaic of patches. The HEP 
approach to modeling wildlife-habitat relations has 
usually dealt with the mosaic structure of landscapes 
by classifying the cover types, calculating the area of 
each, and using this area to convert HSI values to HU 
values. The HEP approach assumes that habitat suit- 
ability in a given patch is not influenced by the size or 
shape of the patch or by the nature of adjacent habitat 
patches (the treatment of the distance variables in the 
models we considered here represent exceptional 
cases). Evidence is accumulating, however, that these 
aspects of landscape mosaic structure have important 
effects on wildlife populations (Forman and Godron 
1986; Verner et al. 1986). The shape of a habitat patch, 
for example, influences the ratio of patch edge to 
patch interior (Temple 1986; Wiens 1989a), which in 
turn may determine how susceptible populations are 
to predators (Wilcove 1985). When a single species or 
a community occupies several cover types, the ar- 
rangement of the mosaic may be important. A particu- 
lar habitat patch, for example, may be unsuitable if it 
is bordered by one cover type but used extensively if 
adjacent to some other type. To the extent that land- 
scape patterns are important, area alone will be an 
inadequate measure of the effects of habitat changes 
on wildlife populations. Modifications of the overall 
landscape mosaic, as well as changes in individual 
habitat patches, make it especially important to con- 
sider wildlife responses in the context of landscapes. 

Landscape mosaic effects on wildlife-habitat re- 
lations should be considered as a central element of 

Summary and Conclusions 

Our review of woodland bird HSI models and our 
more general evaluation of the HSI modeling ap- 
proach leads us to certain conclusions. We list these in 
the sequence that they appear in the report rather 
than by any particular priority: 

1. At present, HSI models should be viewed as 
working, quantitative hypotheses of wildlife-habitat 
relations. The models were developed as manage- 
ment tools, but they may actually be more useful in 
identifying basic topics for research and in assisting in 
experimental designs to test the effects of specific 
perturbations. Their use as predictive tools in manage- 
ment and planning depends on the level of under- 
standing incorporated in the models and their func- 
tions, but at this time it is risky to predict from most of 
the models in the absence of general validation. 

2. Several assumptions are central to HSI models 
and therefore merit careful evaluation. Among the 
most important are the following: 

• Life requisites are correctly identified and interre- 
lated and are indeed limiting to individuals and 
populations of the species of interest. (We recom- 
mend that the response variables of reproduction 
and of mortality and survival be separated in the 
model structure from the measured environmental 
variables such as food and cover, rather than being 
lumped as life requisites). 

• The seasons contained in the model are in fact the 
periods of limitation. For models restricted to the 
breeding (or wintering) season, one must assume 
that the populations are not open; that is, their 
densities are influenced only by events occurring at 
times or places included in the model. 
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• The equations used to combine SI values into HSI's 
may involve simple additive functions or more com- 
plex weighing. As these equations become more 
complex, they are likely to contain more hidden 
assumptions and unanticipated behaviors, and er- 
rors in specifying the SI functions may be amplified. 
By specifying optimum values for SI relations in 
different ways and then combining them in such 
equations, the meaning of the HSI values produced 
may be unclear. 

• In deriving an overall suitability index for a given 
location, it is usually assumed that the limiting 
effects of variables are not area-dependent (except 
as defined by a sometimes ambiguous specification 
of the minimal area requirements of the species), 
that the context of cover types in a landscape mosaic 
has little effect on habitat values within a cover type, 
and that any landscape-context effects that do occur 
are not scale- or area-dependent. These assump- 
tions are not warranted. 

3. Model validation efforts should focus on (in 
order of priority): (a) testing these and other assump- 
tions, especially regarding the limiting effects of par- 
ticular environmental factors; (b) determining the 
sensitivity of model predictions to the structure of the 
HSI equations and the estimation of variables; and (c) 
evaluating the accuracy of model predictions under 
field conditions. Often, carefully designed experi- 
mental manipulations of key variables may yield 
greater insights than broad-scale, multifactor com- 
parisons. Costs of field validation can be reduced by 
using computers to test sensitivity of model structure 
and assumptions before field tests. 

4. The bottom-up approach of combining single- 
species HSI models into general, multispecies HSI 
models may not be feasible unless the models (spe- 
cies) are similar in their structure and variable speci- 
fications. The forest bird models we reviewed do not 
have these similarities. Aggregating specific HSI mod- 
els into more general models is complicated by differ- 
ent specifications of minimal area, life requisites, and 
optimum in SI graphs, dissimilar ranges of cover types, 
a lack of shared variables among the models, different 
functions to derive SI values for variables that are 
shared, and differences in the scale-dependency of 
wildlife-habitat responses among species. 

5. The top-down approach for deriving general 
models begins at the community or guild level and 
defines appropriate variables and functions. This ap- 
proach restricts attention to those variables needed to 
define relations pertinent to a particular management 

objective. It also retains important elements of species 
interactions that are difficult to build into general 
models composed of independent single-species mod- 
els. The approach is hampered by difficulties that 
characterize the bottom-up approach, as well as by the 
problems of consistently defining the appropriate 
level of interest, specifying what measure of system 
performance is most suitable, and incorporating area 
effects on these community parameters. As additional 
species are included in a general model, problems of 
system openness to extrinsic limiting influences also 
become more severe. 

6. We note two possibilities for developing HSI 
models in new directions. One involves developing a 
firmer logical framework for organizing the relations 
among environmental factors and organisms. The 
second emphasizes the importance of the landscape 
mosaic context of cover types or habitat patches used 
by the species or groups of species to be modeled. 
Each of these foci will require a new form of models 
rather than additional variations on the present HSI 
themes. 
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