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12 Measurement of Soil Respiration in situ:
Chamber Techniques

PHILIPPE ROCHETTE
Agriculture and Agri-Food Canada
Sainte-Foy, Québec, Canada

GORDON L. HUTCHINSON
USDA-ARS
Fort Collins, Colorado

Soil respiration is commonly estimated as the flux of CO2 emitted from the soil
surface (Fc). It represents the sum of CO2 produced by root respiration and by
heterotrophic decomposition of root exudates, soil organic matter, and plant litter.
The influence of CO2 fixation by autotrophic soil microorganisms, as well as non-
biological reactions such as the chemical oxidation of organic molecules and the
precipitation or dissolution of soil carbonates, is small in most situations (Suarez,
1999). Root respiration is largely regulated by the root biomass and the rate of
photosynthate transfer from plant leaves and often exhibits a strong diurnal pat-
tern. It may represent 10 to 90% of soil respiration (Hanson et al., 2000). Decom-
position processes are the result of complex interactions among soil fauna, fungi,
actinomycetes, and bacteria. The organisms break down complex molecules such
as cellulose, hemi-cellulose, proteins and lignin into low-molecular-weight sub-
stances, which are then oxidized to CO2 to produce energy or used to provide C
for cell growth. The rate of decomposition is determined by the quantity and
quality of organic substrates, the efficiency and population dynamics of various
decomposer groups, and the soil’s physico-chemical environment including
moisture, temperature, oxygen, acidity, and redox potential (Kilham, 1994; Cole-
man & Crossley, 1996).

Soil respiration is considered a good estimator of overall biological activity
and has been proposed as a descriptor of soil quality (Doran & Parkin, 1994).
Soil respiration measurements are increasingly used in studies of soil C cycling
to detect early changes in decomposition rate of soil organic matter in response to
various soil or crop management practices (Jensen et al., 1996; Rochette &
Angers, 1999). The soil respiration rate also must be known to estimate net crop
photosynthesis from net ecosystem CO2 exchange (Rochette et al., 1995) and
finally, most approaches proposed for measuring root respiration in situ include
measurements of soil-surface CO2 emissions (Hanson et al., 2000).

Chamber techniques have been used to estimate soil respiration for more
than eight decades (Bornemann, 1920) and remain the most commonly used
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approach. They permit measurement of very small Fc, are relatively inexpensive
to build and use, and can be adapted to a wide range of field conditions and
experimental objectives. Several reviews of chamber techniques for soil-surface
gas flux measurements have been published recently (e.g., Livingston & Hutchin-
son, 1995; Holland et al., 1999; Hutchinson & Livingston, 2002), but few of
these have been specific to soil respiration. While many aspects of flux measure-
ment methodology are common to a large group of relatively non-reactive gases,
each gas has some particularities. For example, CO2 fluxes have been and are still
being measured with chambers using chemical traps for absorbing emitted CO2.
Since publication of the last review on soil respiration (Nakayama, 1990) the
introduction of rugged, sensitive, portable CO2 analyzers has revolutionized
chamber technology for determining surface CO2 flux and has led to the develop-
ment of commercial soil respiration measurement systems.

Regardless of which type of chamber is used, its placement on the soil sur-
face perturbs natural conditions and can modify the flux it was intended to meas-
ure. In this chapter, we describe the physical and biological factors affected by
chamber deployment and discuss ways to minimize the impact of those changes
on chamber determination of Fc. We also discuss the principles of operation of
steady-state and non-steady-state chambers, as well as the methodology for spa-
tial and temporal integration of chamber measurements.

FACTORS INFLUENCING CHAMBER PERFORMANCE

Because chamber methods depend exclusively on headspace gas concen-
tration measurements or determining the unused capacity of a known chemical
trap, they provide only an indirect measure of the CO2 flux across the soil surface,
which is in turn equal to the soil respiration rate only under steady-state condi-
tions. Thus, the challenge when using chamber techniques is to minimize pertur-
bations by the chamber of not only the underlying rates of root and microbial
respiration, but also the transport and emission phenomena that determine what
fraction of total CO2 production reaches the headspace of the chamber during its
period of deployment. The principal factors influencing chamber performance
include soil and air temperature, CO2 concentration gradients, pressure fluctua-
tions, soil and air moisture, site disturbance, leakage, and air mixing regime.

Soil Temperature

Soil respiration approximately doubles for every 10°C rise in soil tempera-
ture (Ts) between 5 and 30°C (Q10 = 2) and decreases sharply above 40°C. When
Q10 = 2, a change of 1°C in Ts results in a 7% change in respiration rate. Because
most respiration activity occurs in the top 25 cm of soil, it is obvious that cham-
ber techniques must minimize changes in near-surface soil temperature during
deployment. There is surprisingly little information in existing literature regard-
ing the impact of chambers on soil temperature. Sharkov (1984) reported that the
daytime difference in Ts (!Ts) at 10-cm depth between the inside and outside of a
thin-wall duralumin chamber was +0.5 to +1.5°C during clear days. The differ-
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ence in mean daily values was smaller (+0.5°C) because of greater cooling at
night under the chambers. Coleman (1973) also reported small soil-surface T
biases beneath aluminum cylinders compared with non-covered controls.
Matthias et al. (1980) showed that for short chamber deployments (20 min), !Ts

(2 cm) was 21°C for an insulated reflective galvanized steel chamber. For longer
deployment periods (hours to days), much larger !Ts was measured for plexiglass
(+5°C), metal (–14°C) and insulated reflective steel (–18°C) chambers. Similarly,
!Ts (2 cm) averaged –4°C under reflective acrylic plastic chambers during 8-h
deployments under clear daytime conditions (Rochette et al., 1997).

Soil-surface temperature depends on net radiation and the partitioning of
that energy into latent heat, sensible heat, and soil heat flux. Maintaining the
same energy fluxes inside and outside the chamber is virtually impossible, so air
and/or soil temperatures inside the chamber are likely to differ from the outside
values. Soil temperature should be monitored during short and long deployments
to assess potential impacts on soil respiration and to allow for eventual correc-
tions of Fc. For short deployments (<1 h) correction is not possible, because it is
unknown how fast CO2 production responds to changing Ts, or what additional
delay occurs before resulting changes in the soil [CO2] profile are reflected in Fc.
For longer deployments simple mathematical relationships may compensate for
Ts changes (Lloyd & Taylor, 1994; Palmer-Winkler et al., 1996); however, such
corrections are likely to be imperfect, because they fail to account for interactions
with other regulating variables, or for lateral diffusion that is likely to occur in
response to the altered soil [CO2] profile.

Insulated and reflective chambers are usually adequate to prevent large dif-
ferences in both air temperature (Ta) and Ts for short deployments (21 h)
(Matthias et al., 1980). Such chambers inhibit energy exchange with the atmos-
phere and rely on the thermal inertia of the system to limit T variations. It is then
assumed that remaining small variations in Ts and Ta have negligible effects on Fc

during the short deployment period. During long deployments (>1 h), chamber
design should focus on limiting !Ts to avoid modifying the soil respiration rate
that was intended to be measured. Matthias and Peralta-Hernández (1998) esti-
mated optimal chamber wall emissivity and reflectivity for maintaining Ts under
an opaque chamber equal to that of non-covered soil. The values predicted by
their mathematical model differed depending on whether the chamber was
deployed on dry or wet soil, indicating that chamber wall properties should differ
under contrasting experimental conditions. Intuitively, !Ts should be largest for
deployments on dry soil under clear sky and smallest on wet soil under cloudy (or
shaded) conditions; however, there is very little information to help chamber
users design a chamber that limits !Ts under various environmental conditions
(exposed vs. shaded, dry vs. wet, daytime vs. night-time, etc.), and significant
!Ts should be expected when chambers are left in place for >1 h.

Air Temperature

Increases in Ta of 1 to 2°C during 10 min were measured in clear lexan
chambers (Goulden & Crill, 1997), while Matthias et al. (1980) reported differ-
ences between inside and outside Ta of 22°C for reflective insulated metal cham-
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bers, 15°C for metal chambers, and 27°C for plexiglass chambers after 20-min
deployment periods. Air temperature changes inside chambers can affect Fc

measurements by inducing variations in air pressure (P) or volume. Expansion or
contraction of chamber air in response to changes in its temperature acts as a pis-
ton pushing the air into or pulling the air out of soil beneath a non-vented cham-
ber, thereby substantially altering the measured gas flux across the soil surface
(Hutchinson & Livingston, 2001). Addition of a venting tube overcomes this
problem, but the resultant mass flow through the vent causes leakage or contami-
nation problems if chamber CO2 concentration ([CO2]ch) differs from ambient
CO2 concentration ([CO2]amb). For example, across the range of headspace warm-
ing rates depicted in Fig. 12–1, CO2 loss expressed in units of a surface flux rep-
resents a nontrivial fraction of soil respiration rates that are commonly observed.

Energy balance calculations and in situ measurements (Matthias & Peralta-
Hernández, 1998) indicate that Ta tends to be close to the surface Ts in chambers.
Therefore, chamber designs that minimize !Ts result in significant Ta variations,
and long chamber deployments will almost inevitably be affected by the resulting
pressure (or volume) changes. Correcting for leaks when temperature increases
and air expands during deployment is straightforward if a vent is present (Table
12–1). In this case P remains essentially constant and the effect of an increase in
T can be seen as a “virtual” increase in volume, even if in reality, air flowing
through the vent mixes with ambient air. Under such conditions (increasing T
with constant P and humidity), built-in functions of most portable CO2 analyzers
correct for T-induced gas density variations. Analysis of sample and standard
gases under prescribed laboratory T and P conditions also will eliminate the
effects of rising chamber Ta. Corrections for a decreasing T trend during deploy-
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Fig. 12–1. Impact of chamber air temperature (Ta) variations on mass-flow CO2 flux through the vent-
ing tube of a non-steady-state chamber. The CO2 flux is expressed per unit of soil area covered by
the chamber. (Flux leaving the chamber is considered positive).



ment are more troublesome. Under this scenario, headspace air contracts and is
contaminated by outside air, so corrections require knowing the [CO2] of the air
entering the vent. Because this concentration is usually unknown, chamber
designs that result in rapid cooling of chamber air during deployment should be
avoided.

Humidity

Variations in CO2 flux across the soil surface are related to changes in soil
water content (Hs), primarily because of its strong influence on both solution
phase and gas phase transport rates. The activity of aerobic decomposers is maxi-
mal when approximately 60% of the total soil porosity is occupied by water
(Linn & Doran, 1984). Their activity is reduced at lower water contents by slow
diffusion of substrates and products, and at higher water contents by a restricted
O2 supply. Chambers or collars can modify soil moisture, and thus Fc, by inter-
cepting or excluding rainfall and run-off water, reducing evaporation (Edwards,
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Table 12–1. Corrections for biases in Fc associated with pressure effects induced by chamber air tem-
perature (Ta) variations in vented chambers.

Type Correction

FT-SS Analysers usually have a built-in function to account for differences in Ta between air
entering and leaving the chamber.

If not, all [CO2] readings must be corrected using ideal gas law: 

[CO2](corrected) = [CO2](measured) × (Ta(measured)/Ta(calibration)).

The analyzer temperature response needs to be determined empirically if it doesn’t
follow the ideal gas law.

Fc is then calculated using [CO2](corrected) values.

NFT-SS If Ta is measured, corrections are the same as for NFT-NSS chambers. Because Ta is not
usually measured in NFT-SS chambers and because of the long periods of deployment
(succession of cooling and warming periods), we recommend against venting NFT-SS
chambers (see text).

FT-NSS If Ta increases during deployment:

Analyzers usually have a built-in function to account for variations in T. If not, all
[CO2] must be corrected using ideal gas law: 

[CO2](corrected) = [CO2](measured) × (Ta(measured)/Ta(calibration)).

The analyzer temperature response needs to be determined empirically if it doesn’t
follow the ideal gas law.

Fc is then calculated using [CO2](corrected) values.

If Ta decreases during deployment: Same corrections will be imperfect because of
ambient air contamination.

NFT-NSS Store air samples at a pressure >100 kPa to prevent problems associated with volume
contraction. If Ta increases during deployment: Air samples of a same chamber
deployment must be analyzed at same pressure and temperature (i.e., successively).
Using molar volume determined at chamber temperature in Eq. [3] corrects for
differences in sample temperature between sampling and analysis.

If Ta decreases during deployment: Same corrections will be imperfect because of
ambient air contamination.
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1974) and redistributing soil water that evaporates and then condenses and runs
down the chamber walls. Chambers should not be used during rainfall, as an infil-
trating wetting front outside the chamber may induce mass flow of gases into the
chamber.

The humidity of headspace air (Ha) often increases during deployment and
can have a significant effect on the measurement of Fc. Water evaporated at the
soil surface increases headspace air pressure (or volume) and creates mass flow
problems similar to those induced by rising temperature (Welles & McDermitt,
2005). For example, in a 0.2-m high non-steady-state chamber (Ta = 20°C) where
evaporation increases relative humidity from 0 to 100% during a 1-min deploy-
ment (evaporation rate = 3.3 mmol m–2 s–1), mass flow of CO2 out the chamber
vent would be equivalent to Fc = 0.06 mg m–2 s–1 (Fig. 12–2). Evaporation
increases with Ta, Ts, and soil water content and cannot be stopped during cham-
ber deployment; however, it can be minimized by using reflective and insulated
chambers that decrease available energy at the soil surface. A major difference
between Ta- and Ha-induced P variations is that the mole fraction of CO2 is con-
served during the former but not the latter, because the added water dilutes CO2

in the chamber. Therefore, corrections for the effect of increasing Ha are not as
straightforward as for increasing Ta, and they vary with chamber type. The cor-
rections shown in Table 12–2 address only the dilution problem; other correc-
tions may be needed if the CO2 analyzer exhibits cross-sensitivity to water vapor.

Water vapor condenses on the chamber walls except when the deployment
period is short or the evaporation rate is low. The condensed water influences
chamber performance by changing the headspace volume and by absorption–des-
orption of CO2. These effects can be estimated using simple calculations. For a 3-

Fig. 12–2. Impact of chamber air humidity variations on mass-flow CO2 flux through the venting tube
of a non-steady-state chamber. The CO2 flux is expressed per unit of soil area covered by the
chamber. (Flux leaving the chamber is considered positive).



L chamber (height = 0.15 m; cross-section = 200 cm2) a 1-mm-thick layer of con-
densed water occupies about 3% of the chamber volume, thereby causing a 3%
overestimation of Fc if there is no CO2 exchange between the water and head-
space air. This effect is proportional to the ratio of chamber inner wall surface
area to volume, so, for a given chamber shape, it decreases as the chamber size
increases. The condensed water may also serve as a sink for CO2 when its con-
centration increases, but this effect is small because Henry’s Law coefficient for
CO2 in water is close to unity at 20°C (approximately 2 near 0°C). Therefore, the
faster the exchange of CO2 between gaseous and liquid phases, the smaller the
effect of condensed water on calculation of Fc, because the equilibrium concen-
tration of dissolved CO2 in water will be very close to its concentration in cham-
ber air. As a result, the greatest possible impact of condensed water in this
example would be 3% overestimation of Fc.

Pressure Fluctuations

Theoretical analysis of near-surface atmospheric processes predicts that
mechanical mixing and barometric P fluctuations above an agricultural soil sur-
face add little to the diffusive flux of gases in soil (Kimball & Lemon, 1971);
however, there is empirical evidence that turbulence may have a greater effect
than predicted by theory; e.g., Kimball (1983) attributed a 25% increase in gas
flux across a dry sandy soil surface to turbulence-induced P fluctuations. A prop-
erly designed venting tube transmits changes in external atmospheric P to the
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Table 12–2. Soil-surface CO2 flux (Fc) corrections for removing pressure/volume biases induced by
changes in water vapor partial pressure (ea) in vented chambers.

Type Correction

FT-SS Measured Ci, Co, and f must be corrected to the same humidity. Examples: If Ci, Co,
and f are all measured on dried air samples, no corrections are needed.

If Ci and Co are measured on dried air samples and f at incoming air humidity: 

Co(corrected) = Co(dry) × (1 – ea(incoming) /P) and Ci(corrected)

= Ci(dry) × (1 – ea(incoming) /P) or f (corrected) = f(measured) × (1 – ea(incoming) /P).

If Ci, Co, and f(incoming) are all measured on undried air samples: 

Co(corrected) = Co(measured) × (1 – (ea(outgoing) – ea(incoming))/P)

NFT-SS Correction is not possible. Evapotranspiration affects P until chamber air saturates.
Then, ea-induced P variations amplify temperature-induced P variations as water
vapor condenses and re-evaporates in response to cooling and warming cycles.

FT-NSS and If [CO2] is measured on dried air samples: Fc(corrected) = Fc(measured) × (1 – ea(mean) /P)
NFT-NSS where ea(mean) /P = mean water vapor mole fraction during deployment.

If [CO2] is measured on air samples not dried: 

Fc(corrected) = Fc(measured) + (Fe × [CO2](mean)/(1 – ea(mean) /P) 

where Fe = evaporation rate (in mol area–1 time–1), and [CO2](mean) = mean [CO2]ch

during deployment (Welles & McDermit, 2002).

†Ci, CO2 concentration of the incoming air; Co, CO2 concentration of the ougoing air; P, Barometric
pressure in chamber; f, Flow rate through the chamber; ea, Water vapour partial pressure.



chamber headspace, thereby minimizing suppression by the chamber of their
effect on Fc (Hutchinson & Mosier, 1981; Livingston & Hutchinson, 1995). The
venting tube also overcomes the effects of chamber volume reductions during
chamber deployment and headspace air sampling (Hutchinson & Livingston,
2001).

Chamber Air Mixing Regime

Most chamber estimates of Fc are based on measurements of mean [CO2]ch.
Therefore, adequate mixing of chamber air is required to ensure that air samples
are representative of that mean. Matthias et al. (1980) reported homogeneous air
mixing in a short non-flow-through non-steady-state chamber. In contrast,
aliquots of gas have been shown to take up to 12 min to completely mix within a
49-L flow-through non-steady-state chamber (Ambus & Robertson, 1998).
Accordingly, fans are often used to increase mixing intensity inside the chamber
(Rochette et al., 1997). Fans also can be used to help generate air mixing intensi-
ties that match pre-deployment levels. Mass transfer at the soil surface is charac-
terized by a laminar layer of air through which transfer is diffusive and above
which transfer is convective. The thickness of the diffusive layer decreases with
increasing wind velocity. At steady-state, the vertical [CO2] gradient between soil
and air is in equilibrium with the thickness of the interfacial layer, so Fc equals
soil respiration. A change in turbulence regime modifies the thickness of the dif-
fusive layer, disrupts the equilibrium and results in an adjustment period during
which Fc is not equal to soil respiration. Therefore, deploying a chamber in which
the turbulence intensity differs from pre-deployment conditions may result in
transient effects on gas transfer and biased soil respiration estimates (Matthias et
al., 1980; Healy et al., 1996; Hutchinson et al., 2000).

There are several reports of the effects of chamber air mixing intensity on
Fc estimates. Reicosky et al. (1997) measured Fc that was 10 times larger in a
large fan-mixed chamber than in a small air-stream mixed chamber. Hanson et al.
(1993) measured a seven-fold increase in Fc when wind speed inside a non-
steady-state chamber was increased from 0 to 0.6 m s–1. Le Dantec et al. (1999)
and Janssens et al. (2000) reported that Fc measurements were sensitive to head-
space fan-mixing and concluded that the wind speed inside the chamber should
mimic pre-deployment conditions. On the other hand, Norman et al. (1997) men-
tioned that the use of a fan in a non-steady-state chamber (Crill, 1991) had no
effect on Fc measurement.

Rochette (unpublished data, 2001) assessed the performance of a flow-
through non-steady-state chamber in which 0, 1, 2, or 4 mixing fans were used
(Fig. 12–3). Measurements of Fc were made over mineral soil with relatively low
porosity. The square chamber (cross-section, 0.3 m2; height, 0.2 m) was covered
with 1-cm insulation material and then reflective aluminum foil (Rochette et al.,
1997). Four individually-controlled fans (LI-6000-17, LI-COR Inc., Lincoln,
NE) were mounted horizontally under the top of the chamber. We first compared
measurements made with and without one fan operating during three days in
June and July 2000. The turbulence provided by the air flow alone (0 fan) was not
sufficient to ensure adequate mixing inside the chamber, resulting in a noisy
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[CO2]ch signal and high variability in Fc determination. Total CO2 accumulated in
the chamber during 2-min deployments was usually lower without a fan than
with one fan running, but differences were not the same for all 3 d. CO2 accumu-
lations without a fan were 100, 73, and 33% of those when one fan was used on
day of year (DOY) 188, 206, and 208, respectively. Differences among days sug-
gest that other factors such as wind speed and air-filled porosity at the time of
measurement were probably involved. On DOY 208, we also measured Fc using
0, 1, 2, or 4 fans to mix the chamber headspace. Flux estimates using 1, 2, or 4
fans were nearly identical (Fig. 12–3), suggesting that only one small fan was
needed to achieve near-perfect headspace mixing. Absence of a fan resulted in
flux estimates that started low but increased rapidly during the first 2 min of the
deployment period. Estimates of Fc without a fan were 10, 65, and 92 % of fan-
mixed estimates after 0, 2, and 5 min, respectively. Results of simulation studies
suggest that deployment of a chamber in which gas transfers are diffusive over a
surface previously exposed to a perfectly mixed atmosphere, results in an instan-
taneous decrease in Fc (Healy et al., 1996). The lower early-deployment Fc values
obtained with no fan agree with these predictions.

The above experimental and simulation results support previous observa-
tions that CO2 diffusion into a flow-through non-steady-state chamber depends
on headspace mixing intensity, and that to avoid biased flux estimates, chamber
users must match headspace mixing intensity to pre-deployment conditions as
closely as possible. For example, a low-turbulence chamber may perform well
under a dense plant canopy where the soil is shaded from direct solar radiation
and the air is calm, but the same chamber may underestimate Fc in open agricul-
tural fields where the soil surface is exposed and turbulent mixing is usually high.
Alternatively, use of a highly turbulent chamber in a previously diffusive environ-

Fig. 12–3. Influence of fan-mixing intensity (0, 1, 2, or 4 fans running) of chamber air on chamber
CO2 concentration and soil-surface CO2 flux measurements in a flow-through non-steady-state
chamber.



ment may result in artificially enhanced Fc estimates (Hutchinson et al., 2000). In
addition to their effects on CO2 diffusion, fans with vertical orientation or high
flow rate may induce mass flows by altering air pressure above the soil surface,
especially when the soil’s air-filled porosity is high. Accordingly, fans should be
mounted horizontally away from the soil surface, and excessive fan mixing
should be avoided (Norman et al., 1992; Rochette et al., 1997).

Chamber Headspace Carbon Dioxide Concentration

Soil microbial respiration can be influenced by high [CO2] and low [O2]
that may occur during long chamber deployments. For example, MacFayden
(1973) reported that the soil respiration rate measured at 0.0017 m3 CO2 m–3 was
0 to 63% smaller than in a CO2-free atmosphere, and O2 variations resulted in
modified Fc during laboratory incubations (Parr & Reuszer, 1959; van Cleve et
al., 1979; Sharkov, 1984). Koizumi et al. (1991) found that soil respiration was
stimulated by below-ambient [CO2], and low [CO2]ch has been suggested as the
reason for elevated Fc measured in non-flow-through steady-state chambers
(alkali traps) (MacFayden, 1973; Bekku et al., 1997). Although large CO2 con-
centrations and O2 depletion can have significant effects on soil respiration dur-
ing long deployments, they are not likely to be a factor for shorter (<1 h)
deployments.

In addition to its direct effect on microbial respiration, headspace [CO2]
also influences upward transport of the gas away from its site of production in
soil. Under steady-state conditions, the rate of CO2 emission at the soil surface is
equal to its sub-surface rate of production, and the vertical [CO2] gradient is con-
stant. When a non-steady-state chamber is deployed, [CO2] immediately above
the soil surface increases, thereby reducing the gradient and thus the CO2 flux
into the chamber (Matthias et al., 1978; Healy et al., 1996). The difference
between the constant production rate and the decreasing flux into the chamber
accumulates in the soil profile beneath the chamber, partially re-building the gra-
dient (Rayment, 2000). The rate of decline in the surface flux is greatest immedi-
ately after deployment, then decreases gradually as gradient re-adjustment
proceeds at greater soil depth (Naganawa & Kyuma, 1991; Healy et al., 1996;
Rochette et al., 1997). In contrast, for a steady-state chamber where [CO2] is
maintained constant, modification of the [CO2] gradient influences Fc measure-
ments only until a new steady state is achieved and Fc is again equal to the pro-
duction rate. Options for minimizing the effects of changing [CO2]ch on Fc will be
addressed in the subsequent “chamber techniques” section.

Leaks and Site Disturbance

Chamber techniques are based on the assumption that the chamber and its
underlying soil column are isolated from the surrounding environment, or that
mass exchange with the outside is measured. Inadequate isolation induces biases
in Fc estimates if [CO2]ch 3 [CO2]amb. Examples of openings through which head-
space gases may leak or become contaminated by ambient air include the venting
tube and imperfect seals at the chamber-collar and chamber- or collar-soil joints.
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Model simulations predict that a properly designed vent avoids most unwanted
pressure differences between the inside and outside of the chamber without sig-
nificant risk of leakage or contamination (Hutchinson & Livingston, 2001); how-
ever, Conen and Smith (1998) recently proposed that a venting tube may create
more significant problems than it solves, because of the Venturi effect caused by
wind blowing over the tube’s open end. They reported that soil N2O emission
measured by vented aluminum chambers was sometimes significantly greater
than when similar non-vented chambers were used, and they attributed the differ-
ence to upward mass flow of air beneath the vented chambers due to the Venturi
effect. Hutchinson and Livingston (2001) argued that the difference in flux esti-
mates noted by Conen and Smith (1998) may instead have been due to Ta-related
pressure variations beneath the non-vented chambers, but cautioned that the vent
must be properly sized, located, and shielded to minimize the potential for
depressurization. Optimum vent tube diameter and length can be computed from
the equations in Hutchinson and Mosier (1981) or taken from the nomograph in
Hutchinson and Livingston (2002), but existing literature offers little guidance
regarding optimum vent tube location and shielding. Intuitively, the vent’s exter-
nal opening should be as near the soil surface as practical, because wind speed
increases logarithmically with height in the lower atmospheric boundary layer.

Norman et al. (1992) estimated that leaks through the venting tube of a 5-L
flow-through non-steady-state chamber were equivalent to a surface flux of
0.0022 mg m–2 s–1 (approximately 2% of the average summer Fc in a forest soil)
for every 20 μmol mol–1 difference between [CO2]ch and [CO2]amb. Total leakage
through the vent, imperfect seals and components of the air circulation system
(tubing, filter, or pump) can be evaluated by sealing the chamber system to a non-
emitting surface, adjusting [CO2]ch to be different than [CO2]amb, and then moni-
toring the rate of change in [CO2]ch over time. In flow-through chamber systems,
leaks in the air circulation system (tubing and pump) would be easily detected
with this test as leak-induced pressure differences would result in substantial CO2

flux out or in the chamber through the venting tube. Our laboratory tests using a
50-L chamber (vent: 0.01 m i.d. × 0.25 m length) yielded very small leaks—
0.0001 or 0.0002 mg m–2 s–1 when wind speed over the chamber was 0 or
3.5 m s–1, respectively, and the difference between [CO2]ch and [CO2]amb was 800
μmol mol–1. Interestingly, running the soil respiration system pump (LI-6200, LI-
COR Inc, Lincoln, NE) with or without one fan running had no impact on the
leaks. These results confirm that in absence of a pressure difference between the
outside and inside of the chamber, leakage through the vent should be small in
most situations.

A closed-cell foam gasket or water can provide a good seal between the
collar and chamber. A good seal between chamber and soil requires insertion of
chamber walls into the soil (Healy et al., 1996). This operation can alter the soil
resistance to gas exchange if openings are created at the soil–wall interface.
Matthias et al. (1980) measured increases of up to 250% in N2O fluxes when a
collar was inserted inside a larger chamber. The impacts of soil disturbance will
be greater when soil diffusivity is lower (wet or compacted soils) because of the
large vertical CO2 gradients in such soils (Norman et al., 1997). Push-in cham-
bers are more subject to this problem, and high transient fluxes (from 0.66 to
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0.3 mg m–2 s–1 in 40 min) have resulted from their use shortly after rainfall (Nor-
man et al., 1997). Such chambers can also bias Fc measurements by breaking sur-
face crusts that sometimes form when soil dries (Rochette et al., 1997).

Most chamber users have solved the soil disturbance problems related to
chamber insertion (as well as the difficulties associated with the insertion of
larger chambers) by using collars that are installed prior to the measurements.
Recommended delays between collar installation and measurements can vary
from 1 h for shallow (2 cm) collars used with chambers that operate at [CO2]ch =
[CO2]amb (Norman et al., 1997) to several weeks for deep collars (15 cm) within
which there was substantial root damage (Hutchinson & Livingston, 2002); how-
ever, use of collars does not solve all problems. Norman et al. (1997) reported
that collars inserted to shallow depths, or in non-cohesive (e.g., organic) materi-
als, tend to become loose after repeated measurements and lead to erroneously
high Fc; they recommend using metal spikes to stabilize the collar. Collars also
can affect soil moisture by preventing run-off, soil temperature by shading the
soil and gas exchange by the formation of shrinkage cracks at the collar–soil
interface. When conditions inside a collar differ substantially from the outside, it
should be relocated.

Leakage or contamination also may occur by lateral diffusion of CO2

beneath the chamber (collar) wall in response to deformation of the vertical
[CO2] gradient in soil. Healy et al. (1996) estimated the magnitude of lateral dif-
fusion for a chamber resting on soil surface (0 cm insertion depth) by comparing
one- and three-dimensional simulations of gas diffusion in the soil-chamber con-
tinuum. The decrease in Fc after 30 min was three times larger for the three-
dimensional case. Wall insertion depths that ensure minimal leaks increase with
increasing deployment time and soil gas diffusivity. Model simulations suggest
that insertion depths required to limit biases in Fc estimates to <1% are 2.5 cm for
10-min deployments and 13 cm for 60-min deployments in a soil having air-filled
porosity of 0.3 m3 m–3 (Hutchinson & Livingston, 2001). In disturbed soil where
convective flow can occur in cracks and voids, deeper insertion is probably
required. For example, insertion to the bottom of the plough layer (0.2 m) was
required to provide an adequate seal in recently ploughed fine-textured soils
(Rochette, unpublished data, 2000).

The impact of lateral diffusion on Fc measurement is affected by the geom-
etry of the chamber. The magnitude of such leaks is proportional to the perimeter
of the chamber (mg CO2 m–1 s–1), while the flux of gas into the chamber (mg
CO2 m–2 s–1) increases with the area of soil covered by the chamber. Therefore,
the impact on Fc determination decreases with increasing chamber width (propor-
tional to “2/radius” for cylindrical chambers). Increasing chamber height also
reduces leakage/contamination by decreasing the difference in [CO2] inside and
outside the chamber for a given Fc.

Chamber Design

Chambers can be made of various rigid materials that don’t react with CO2

(stainless steel, aluminum, acrylic plastic, polyvinyl chloride, etc.). Chamber
geometry appears to have little direct effect on flux estimates as long as adequate
air mixing is achieved (Hutchinson & Livingston, 2001); however, the geometry

258 ROCHETTE & HUTCHINSON



can be altered to improve chamber performance under specific experimental con-
ditions or to achieve specific scientific objectives. For example, Taller chambers
experience a smaller increase in [CO2]ch for a given Fc and are thus less subject to
leaks, problems associated with humidity increases, and errors in volume deter-
mination. On the other hand, taller chambers make Ta and Ha control more diffi-
cult, may require a fan to achieve adequate mixing, and are less accurate for
measuring small Fc (Rochette et al., 1997). Chambers with small cross-section
can sample small spatial variations and can be used in inhomogeneous terrain
(between rocks, vegetation, and tree roots), but they also are more sensitive to
leaks and site disturbance, and cannot integrate spatial variability (Norman et al.,
1997).

Air Sampling and Carbon Dioxide Analysis

Carbon dioxide concentration can be measured in real time during deploy-
ment or in the laboratory on samples taken earlier during chamber deployment.
Most gas analyzers that can be used for near-continuous [CO2] determination are
based on the property of CO2 to absorb infrared radiation (IRGA). Differences
between the absorbance of samples and a reference of known concentration have
been determined using acoustic or radiation detectors, both of which are portable
and adaptable to flow-through chamber systems (Rochette et al., 1991; Ambus &
Robertson, 1998; Welles & McDermitt, 2002). When an analyzer is not available
at the experimental site, air samples are usually taken using syringes or pre-evacu-
ated glass vials, depending on the anticipated delay before analysis. In a compara-
tive study, aluminum canisters and tedlar bags were best, while nylon and tygon
were worst, for sample conservation during a 10-d period (Scott et al., 1999). High
contamination (approximately 16% d–1) has been observed in samples stored in
polypropylene syringes with a polyisoprene “piston gasket” and these syringes
should not be used for storage longer than a few hours (Rochette & Bertrand,
2003). Air-tight glass syringes provide a better seal but are expensive, cumber-
some, and cannot be easily adapted to automated analysis. They also are subject to
contamination when temperature at the time of sampling is higher than during
storage or analysis. Pressurizing samples (200 kPa) into pre-evacuated vials (12-
mL Exetainer, Labco, High Wycombe, England) using a syringe allows for travel
over long distances and analysis on a gas chromatograph equipped with a head-
space autosampler. Handling samples at above-ambient pressure minimizes
contamination during storage (approximately 0.001 m3 m–3 d–1) and when a sub-
sample is taken for analysis, and residual positive P after analysis can be used to
detect defective vials. We strongly recommend to evacuate the vials not more than
a few days before use, to use fine needles (26 or 27 G) for evacuation and sam-
pling, and to routinely evaluate the level of vacuum reached and how it evolves
with time. Whenever chambers are used, samples should be taken from a source of
known [CO2] in the field following the same procedure as for chamber air sam-
ples. These samples should be stored and analyzed in the same way as the
unknown samples to assess sample handling efficiency.

Gas chromatographs are extensively used for [CO2] determination in air
samples. They are most often used in the laboratory, but can be adapted for field
operation (Christensen, 1983; Loftfield et al., 1992). General information for
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determination of [CO2] using a gas chromatograph can be found in Lodge (1988)
and Zibilske (1994). Several combinations of column, detector, and analysis con-
ditions can be used. The choice depends, among other things, on required sensi-
tivity, sample volumes, and constraints related to the simultaneous analysis of
other gases. An example of a gas chromatograph (Model 3800, Varian, Walnut
Creek, CA) configuration for [CO2] determination on three detectors is given in
Table 12–3. This gas chromatograph configuration allows for the simultaneous
determination of CH4, CO2, N2O, and O2 in 5-mL samples during 5-min runs.
Low and high [CO2] are measured on the flame ionization and thermal conductiv-
ity detectors, respectively. The electron capture detector line configuration is
optimized for N2O but can provide back-up estimates for high [CO2]. The per-
formance of all three configurations can be modified by changing sample vol-
ume, detector T, etc. Use of sampling loops helps keep the injected volume
constant. Gas chromatographs can be equipped with headspace autoinjectors for
automation. IRGA analyzers also can be used in the laboratory for small air sam-
ples (Parkinson, 1981; Bekku et al., 1995).

The property of CO2 to react with alkali substrates has been used to quan-
tify CO2 fluxes. Aqueous solutions of NaOH and KOH have been used for this
purpose. Soda lime also can be used if required corrections are made for water
formed during CO2 absorption (Minderman & Vulto, 1973; Edwards, 1982; Gro-
gan, 1998).

CHAMBER TECHNIQUES

Several types of chambers are used for in situ measurement of Fc. Accord-
ing to the classification scheme proposed by Livingston and Hutchinson (1995),
all types can be grouped into steady-state (SS) chambers in which Fc is calculated
under constant [CO2]ch and non-steady-state (NSS) chambers in which Fc is cal-
culated from the rate of change in [CO2]ch. Both classes can be further divided
into flow-through (FT) or non-flow-through (NFT) types depending on whether
air is circulated through the chamber. In the following sections, we suggest
designs and operational protocols for optimizing each chamber type for Fc meas-
urements.

Flow-Through Steady-State Chambers

As detailed earlier in this chapter, an increase in [CO2]ch during chamber
deployment has a direct impact on Fc. Steady-state chambers are designed to
reduce this impact by measuring Fc at constant [CO2]ch. In FT-SS chambers,
[CO2]ch is controlled by passing air through the chamber at a known constant rate
( f; m3 s–1). Fc (μmol m–2 s–1) is then calculated as follows:

Fc = ( f /A) (Co – Ci)/Mv [1]

where A is the enclosed soil area, Mv (m3 mol–1) is the molar volume of air at
chamber air temperature and pressure, and Ci and Co are the [CO2] (μmol mol–1)
of air entering and leaving the chamber, respectively.
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Flow-through steady-state chamber systems require accurate measure-
ments of f and [CO2]. Early prototypes of this chamber type employed a chemical
trap to absorb CO2 from outgoing air, because accurate and portable CO2 analyz-
ers were unavailable (Humfeld, 1930; Wallis & Wilde, 1957). Unused absorbent
(usually a KOH or NaOH solution) was then determined by titration. The [CO2]
of incoming air was assumed equal to the ambient level or estimated using a sep-
arate chemical trap to scrub air drawn from near the chamber inlet. Historically,
the chamber system’s flow control device was calibrated prior to deployment
using a rotameter or ‘bubble’ flow meter and then assumed to maintain constant f
during the period of measurement. Correcting such measurements for changes in
Ta and Pa was seldom done. Modern electronic mass flow meters provide continu-
ous real-time Ta- and Pa-corrected data, so they represent a much easier and more
accurate alternative when electrical power is available. Nevertheless, rotameters
remain the only method available at remote field sites and provide adequate data
if they are calibrated carefully and read frequently along with the observations of
Ta and Pa needed to correct the resulting data.

Early FT-SS chamber designs were also often plagued with technical
problems that resulted from inadequate understanding of the factors controlling
Fc. For example, many Fc estimates were biased by pressure gradients induced
by the air circulation system. In some systems, negative pressure was created by
drawing air from a chamber having inadequate openings to compensate for the
sampled air (Wallis & Wilde, 1957). Other designs purposely maintained posi-
tive pressure inside the chamber to avoid contamination by ambient air (Reiners,
1968; Kucera & Kirkham, 1971). Some authors recognized that pressure gradi-
ents created the potential for measurement error (Mina, 1962; Reiners, 1968;
Kucera & Kirkham, 1971), but Kanemasu et al. (1974) first quantified the error
in detail. They showed that when air was drawn rather than pushed through a
FT-SS chamber, Fc increased several fold even when the difference in headspace
air pressure between these two modes of operation was <4 Pa. Later, Fang and
Moncrieff (1996) established that the difference in pressure inside and outside
the chamber should be 20.2 Pa for reliable measurements. Recent FT-SS cham-
ber designs incorporate elements that ensure negligible pressure gradients (Den-
mead, 1979; Rayment & Jarvis, 1997; Fang & Moncrieff, 1998).

Advantages of FT-SS compared with NSS chambers include the potential
to maintain [CO2]ch close to pre-deployment levels, better control of the tempera-
ture and humidity of both soil and air inside the chamber, and the possibility of
near-continuous monitoring; however, exploiting these potential advantages in
operational FT-SS systems is not easy, and sometimes not possible. For example,
FT-SS chambers swept with a constant flow of ambient air cannot maintain
[CO2]ch equal to [CO2]amb. Instead, [CO2]ch increases with time until it equals Ci +
Fc × (A Mv/f ). This concentration may be substantially larger than [CO2]amb, even
at relatively large f (Rayment, 2000). The time required to reach it varies widely
and becomes longer with increasing chamber height and decreasing f. Achieving
nearly constant N2O concentration in a FT-SS chamber has been reported to
require as little as 2 min (Matthias et al., 1978) and as long as 60 min (Denmead,
1979).
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In a FT-SS chamber swept with zero air instead of ambient air, [CO2]ch may
either increase or decrease depending on f. For the special case where Fc × A =
( f /Mv) × [CO2]amb, there will be no change in [CO2]ch following deployment and
thus no chamber-induced error; however, only a small mismatch in the incoming
and outgoing mass fluxes of CO2 is enough to spawn significant measurement
errors (Hutchinson et al., 2000), so it is difficult to avoid such errors by adjusting
f in an attempt to achieve [CO2]ch = [CO2]amb. Real-time accurate measurements of
both [CO2]ch and f are essential, because spatial variation in Fc is likely to require
a different f for every chamber placement. Moreover, the time required to attain
nearly constant [CO2]ch following each flow adjustment must be short compared
to the temporal variability in Fc. Even when practical considerations limit the
success of attempts to match [CO2]ch to [CO2]amb, minimizing the difference
between these two concentrations remains a viable goal because leakage through
imperfect chamber seals, lateral diffusion beneath the chamber walls, and other
measurement errors vary with the size of this concentration difference (Hutchin-
son & Livingston, 2001).

When [CO2]ch is monitored in real time, users of FT-SS chambers often pur-
posely base their flux estimates on the value measured when the rate of change in
this concentration first approaches zero. Unfortunately, this also is the time of
maximum deviation of Fc from the underlying true respiration rate (Hutchinson
et al., 2000). After that time [CO2]ch continues to change, although at a greatly
reduced rate, as the [CO2] in soil air adjusts to form a new gradient capable of
again supporting Fc equal to soil respiration. This recovery from the initial non-
steady-state condition beneath a SS chamber does not occur rapidly enough to
avoid measurement errors analogous to those for which NSS chambers are often
criticized. Moreover, the magnitude of those errors varies with changes in soil
and atmospheric parameters just as it does for NSS chambers. Modeling studies
(Matthias et al., 1978; Hutchinson et al., 2000) suggest that the resulting bias in
typical FT-SS estimates of soil respiration may be as high as ±15% when the
soil’s air-filled porosity is 0.3 and ±30% when air-filled porosity is 0.5.

Despite their limitations, FT-SS chambers are more adaptable than NSS
chambers to continuous monitoring of Fc during long periods (Rayment & Jarvis,
1997). The convective transport of sensible and latent heat by the sweep air dissi-
pates excess energy inside the chamber and helps maintain Ts close to outside
conditions. Few articles report simultaneous measurements of Ts and Ta inside
and outside FT-SS chambers. Soil temperature in the top 3 cm was lower during
daytime and higher at night beneath a steel FT-SS chamber with a acrylic lid, but
!Ts was always 22°C (Denmead, 1979). Similar results are presented for wind
tunnels on bare soil and under canola residues in Fig. 12–4. These variations are
much smaller than those reported by Matthias et al. (1980) for NSS chambers
made of various materials. Other problems associated with long deployments can
be reduced by equipping the FT-SS system with a retractable lid that is periodi-
cally closed for Fc measurement (McGinn et al., 1998). Correcting measured
[CO2] in FT-SS chambers for differences in Ta and Ha between ingoing and out-
going air is straightforward (Tables 12–1 and 12–2). These corrections are
smaller for SS chambers than for NSS chambers. For example, the maximum
correction for Ha at 20°C is 2.4% of the flux estimate.
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Minderman and Vulto (1973) and Freijer and Bouten (1991) proposed a
FT-SS design in which headspace air was circulated at a known rate through an
external KOH trap and then back to the chamber. Advantages include the avoid-
ance of pressure gradients by using closed-loop air circulation and the opportu-
nity to maintain [CO2]ch close to [CO2]amb without the requirement for an external
source of zero air; however, the use of alkali is cumbersome, and as mentioned
above, real-time accurate measurements of both [CO2]ch and f are essential for
guiding efforts to minimize the difference between [CO2]ch and [CO2]amb. Another
example of an atypical FT-SS chamber is the wind tunnel (Lockyer, 1984), but it
has rarely been used for measuring Fc. Because it has large volume, large open-
ings, and strong ventilation, a wind tunnel is expected to perturb existing environ-
mental conditions only minimally. Nevertheless, Schwartzkopf (1978) observed a
direct relationship between Fc and the air flow rate through the tunnel. More
recently, a wind tunnel system was described (Iritz et al., 1997) and used (Morén
& Lindroth, 1999) for monitoring Fc under a forest canopy. Loubet et al. (1999)
conducted an extensive theoretical and empirical validation of wind tunnels for
measuring Fc and highlighted the importance of adequate air sampling to obtain
an accurate measure of Co. Wind tunnels may prove especially well adapted to
measuring Fc from soil with large surface heterogeneity and air-filled macrop-
orosity, as are found following tillage (Reicosky & Lindstrom, 1993; Reicosky et
al., 1997).

Non-Flow-Through Steady-State Chambers

Steady-state measurement of Fc at constant [CO2]ch also can be achieved
without air flow through the chamber. A NFT-SS chamber, variously labeled in

Fig. 12–4. Mean diurnal pattern of differences in soil temperature (1-cm depth) between outside and
inside (Outside – Inside) of clear acrylic wind tunnels during 6 consecutive days. There were three
tunnels for each treatment (Adapted from Rochette et al., 2001).



the past as a static chamber, absorption chamber, or alkali trap chamber, has no
air inlet or outlet. Instead, it contains a vessel that is supported above the soil sur-
face and filled with a known amount of an alkali substance. Such chambers are
typically deployed for long periods (p), often 12 or 24 h, and the amount of CO2

trapped by the alkali (Ca; mol) is determined by titration (Anderson, 1982) or by
weight change for soda lime (Zibilske, 1994). Fc is calculated as follows:

Fc = (Ca – Cb)/(A p) [2]

where A is the enclosed soil area and Cb (mol) is the amount of CO2 absorbed by
an identical (blank) trap handled the same as other traps except that it has been
placed in a chamber deployed over a non-emitting surface.

A NFT-SS chamber was the first device used for measuring soil respiration
in situ (Bornemann, 1920; Lundegårdh, 1921), and the only one used very exten-
sively before 1985. Since that time, the development of accurate and portable
CO2 analyzers has resulted in the progressive replacement of this chamber type
by more sophisticated systems. The NFT-SS chamber is often described as inac-
curate, either underestimating (Ewel et al., 1987; Norman et al., 1992; Rochette
et al., 1992) or more seldom, overestimating (Bekku et al. 1997) Fc measured by
FT-SS and NSS chambers. As a result, Fc values obtained from NFT-SS cham-
bers are considered by many as unreliable and, at best, estimates of the relative
difference between sources (Minderman & Vulto, 1973; Singh & Gupta, 1977;
Norman et al., 1997). This chamber technique, however, serves a need that is not
addressed by other methods; i.e., it is a simple inexpensive means for obtaining
multiple time-integrated measurements at remote locations. When used in combi-
nation with short-term measurements by other chamber techniques, NFT-SS
chambers are useful tools for studying Fc in complex ecosystems where a large
number of measurements is required (Janssens & Ceulemans, 1998). In this sec-
tion, we assess the current understanding of factors affecting the performance of
NFT-SS chambers, then discuss how that knowledge should be used to guide
their design and deployment protocol.

The rate of CO2 absorption by the alkali trap in a NFT-SS chamber is pro-
portional to [CO2]ch. For a perfectly designed chamber the absorption rate is equal
to Fc when [CO2]ch = [CO2]amb. In that situation there are no changes in [CO2]
either above or below the soil surface during the period of deployment, and Fc

remains equal to the underlying rate of CO2 production. Achieving and maintain-
ing this balance is difficult, if not impossible. Instead, [CO2]ch often rises follow-
ing chamber deployment until the rate of CO2 absorption becomes equal to Fc.
The result is a biased estimate of Fc—first, because the increase in [CO2]ch repre-
sents emitted CO2 not accounted for in the alkali trap, and secondly, because the
elevated concentration supports CO2 losses by leakage through imperfect cham-
ber seals and by lateral diffusion beneath the chamber walls. In contrast, [CO2]ch

may decline following chamber deployment if Fc is particularly small, or the ratio
of alkali trap area to emitting soil surface area is too large. The result in this case
is an overestimate (instead of underestimate) of Fc, because the decrease in
[CO2]ch represents absorbed CO2 not emitted from soil during the deployment
period, and because the reduced concentration supports CO2 gain by the chamber
system via leakage and subsurface lateral diffusion.
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Previous authors have studied many of the factors that influence the effi-
ciency of CO2 absorption by an alkali trap. For example, under normal field con-
ditions Gupta and Singh (1977) found that the rate of CO2 absorption was nearly
six times greater by 1.25 M than 0.1 M NaOH, and a linear relationship was
observed between these two concentrations. Kirita and Hozumi (1966) concluded
that a KOH concentration >0.5 M ensures an absorption rate >90% of its theoret-
ical value. Other reports indicate that the absorption rate varies little when the
alkali concentration exceeds 0.2 M (Haber, 1958), 0.25 M (Minderman & Vulto,
1973), or 0.5 M (Medina & Zelwer, 1972). On the other hand, Douglas and
Tedrow (1959) warned against using very high alkali concentrations, because of
problems related to water vapor transfer from the soil to the alkali. Based on
these results, it appears that the optimal alkali molarity is approximately 0.5 to
1.0. The absorption rate of such a solution was found to be insensitive to the
amount of accumulated carbonate until its capacity had been reduced by 80 to
90% (Haber, 1958), 73% (Sharkov, 1984), 70% (Stotzky, 1965), or 65% (Gupta
& Singh, 1977). To allow a margin for error we suggest using an alkali trap with
total capacity approximately three times greater than the amount of CO2 expected
to be emitted during the planned deployment period.

In addition to its dependence on volume and molarity the efficiency of CO2

absorption by the alkali solution has been reported to depend on the size and
shape of its container (Sharkov, 1984), as well as the position of that container in
the chamber headspace (Haber, 1958). Anderson (1982) recommended placing
the trap 2 cm above the soil surface, while model calculations of Hutchinson and
Rochette (2003) suggest that trap height has little effect unless it is so near the
soil surface or the chamber top that the cross-sectional area available for CO2

transport is restricted. Size and shape of the alkali container has much greater
importance, because it determines the ratio of exposed alkali surface area to emit-
ting soil surface area (hereafter abbreviated as the alkali/chamber area ratio).
Area ratios required to achieve optimal CO2 absorption rates were reported to be
13% by Kirita (1971) and 20% by Gupta and Singh (1977) for their respective
chamber designs and deployment conditions. Nakadai et al. (1993) and Bekku et
al. (1997) obtained greater trapping efficiency by soaking a sponge with NaOH
solution to increase its area of contact between the air and the alkali. To maintain
[CO2]ch near [CO2]amb when Fc = 0.1 or 0.2 mg m–2 s–1, Mina (1962) estimated that
his NFT-SS system required area ratios of 14 and 28%, respectively, which he
calculated by dividing the expected Fc by the measured CO2 absorption rate of his
0.2 M NaOH trap when it was exposed to ambient air (0.7 mg m–2 s–1). In a com-
parison of NFT-SS systems with area ratios of 11.5 and 25%, Sharkov (1984)
found 48% less CO2 in the smaller trap after the first 3 h of deployment, but the
difference was only 5% between the 12th and 24th h. He concluded that in the
chamber with the smaller trap, a larger fraction of the CO2 emitted early in the
deployment period went into increasing [CO2]ch. Apparently, an area ratio near
20% provides good absorption efficiency in many situations, but this ratio can be
altered when needed to keep [CO2]ch as close as possible to [CO2]amb.

Despite decades of experience and scores of studies designed to optimize
the design of NFT-SS chambers, many questions remain regarding their accuracy
and performance, as well as the optimal protocol for their use. Most of these
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questions revolve around the limited CO2-absorbing efficiency of an alkali trap,
which has often been noted but never fully explained. For example, Lieth and
Ouellette (1962) found that complete absorption of [CO2]amb in a sealed chamber
required nearly 12 h, and Friejer and Bouten (1991) reported that only 30% of the
CO2 injected into a sealed chamber was absorbed after 150 min. There is consid-
erable textbook and empirical evidence that the transfer rate of gaseous CO2 from
its subsurface point of production to the surface of an alkali trap in a NFT-SS
chamber is much slower than its rate of dissolution and reaction with the alkali,
and the weak dependence of CO2 absorption efficiency on alkali molarity greater
than a modest threshold value (see above) supports this notion. To examine the
consequences of this transport limitation, Hutchinson and Rochette (2003) used a
numerical gas diffusion model to study its impact on the CO2 absorption effi-
ciency of an alkali trap, as well as the processes governing CO2 gain or loss by
the chamber system.

Results from a typical series of simulations are presented in Fig. 12–5,
which illustrates the effect of changing the alkali/chamber area ratio when cham-
ber walls were inserted to the impermeable bottom of the simulated domain 50
cm below the surface; other assumptions are listed at the top of the figure and
explained briefly in its caption. Figure 12–5a shows the instantaneous simulated
flux into the chamber (Fc) normalized with respect to the true unperturbed depth-
integrated soil respiration rate (Fo) and plotted as a function of time after deploy-
ment. Figure 12–5b shows the normalized flux measured by the alkali trap over
several deployment times of different length, while Fig. 12–5c gives the mean
[CO2]ch as a function of time. Under the assumed conditions, the traps with 30 and
40% alkali/chamber area ratios had initial absorption rates that nearly matched
Fo. There was, therefore, little change in [CO2]ch, Fc remained very near Fo, and
the amount of CO2 absorbed by the alkali provided a very good estimate of soil
respiration for all deployment times ranging from 4 h to 24 h. At smaller
alkali/chamber area ratios the [CO2]ch required to support a CO2 absorption rate
approaching Fo became increasingly larger which, in turn, resulted in increas-
ingly larger deviations of Fc and the alkali-measured flux from Fo, especially
early in the deployment period.

Note that despite the nearly seven-fold increase in [CO2]ch when the
alkali/chamber area ratio was only 5%, maximum chamber-induced disturbance
in Fc was comparatively small (–16%) and decreased after 24 h to less than –3%
(Fig. 12–5a). Nevertheless, the alkali trap yielded a 38% underestimate of Fo dur-
ing the first 4-h period (Fig. 12–5b), because a substantial fraction of emitted CO2

remained in headspace air (Fig. 12–5c). When the deployment period was
extended to 8 h, the underestimate declined to 26%, because of the declining rate
of increase in the [CO2]ch and the resulting return of the Fc/Fo ratio toward unity.
Further lengthening the deployment period resulted in better and better estimates
of Fo by the alkali trap as effects of the initial non-steady-state condition were
more and more diluted by absorption rates that more closely reflected the true
soil respiration rate. In fact, alkali traps with all but the smallest area ratio yielded
reasonably good estimates after 24 h deployment time; i.e., 0.944, 0.980, 0.992,
and 0.997 × Fo for traps with alkali/chamber area ratios of 10, 20, 30, and 40%
respectively.
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Fig. 12–5. Simulated effect of the ratio of exposed alkali surface area to emitting soil surface area on
the performance of a NFT-SS chamber. Graph (a) shows the normalized instantaneous CO2 flux
across the soil surface, graph (b) the cumulative amount of CO2 absorbed by the alkali trap, and
graph (c) the headspace CO2 concentration all as a function of time under assumptions specified at
the top of the figure (AFPS = soil air-filled pore space, and D = binary diffusion coefficient of CO2

in air). Chamber wall insertion depth was 50 cm except for the curves labeled differently. The
fluxes in (a) and (b) were normalized with respect to the assumed depth-integrated rate of CO2 pro-
duction (Adapted from Hutchinson & Rochette, 2003).



From other simulations Hutchinson and Rochette (2003) concluded that
NFT-SS chambers should be non-vented. They reasoned that in a sealed chamber
small amounts of headspace air will move upward and downward across the soil
surface by mass flow in response to changes in Ta, Pa, etc., and the CO2 in that air
will eventually be absorbed by the alkali trap rather than lost from the chamber
system. Thus, there should be little, if any, net effect on NFT-SS chamber per-
formance of perturbations that yield only short-term changes in chamber pres-
sure, volume, or temperature, as long as the system is closed and the deployment
period is long.

A disadvantage of the typically long deployment period of NFT-SS chamber
systems is that net CO2 gain or loss via leakage through imperfect chamber seals
and by lateral diffusion beneath the chamber walls may be larger and more diffi-
cult to control than for other chamber types. To compensate, chamber seals must
be tight, and the chamber walls may need to be inserted to greater depth than for
other chamber types. The potential importance of lateral diffusion is illustrated in
Fig. 12–5, which includes results for a simulation identical to the one with 5%
area ratio described above except that chamber sidewalls were inserted only 5 cm
into the soil. [CO2]ch was not remarkably different in the two cases (2052 vs. 2483
μmol mol–1 after 24 h with 5 and 50 cm wall insertion, respectively), but the return
of both Fc and the alkali-measured flux toward their pre-deployment rates was
substantially impeded by the loss of CO2 via lateral diffusion beneath the chamber
walls. Such CO2 loss (gain) by a NFT-SS chamber system, as well as the measure-
ment error attributable to depletion or accumulation of the gas within and beneath
it, become more problematic with increasing departure of [CO2]ch from [CO2]amb,
thus emphasizing that the alkali trap should be designed such that its CO2 absorp-
tion rate at [CO2]amb matches Fo as closely as possible.

Finally, the typically long deployment periods of NFT-SS chambers also
make it virtually impossible to maintain small !Ts. Under clear skies, users
should expect differences of several degrees C, which probably alters the subsur-
face rates of plant and microbial respiration that the chamber was intended to
measure. Opaque chambers in which Ts is lower than outside values during day-
time experience the opposite trend at night (Sharkov, 1984), so 24-h deployments
may reduce the Ts bias in soil respiration measurements. Deployments longer
than 24 h are discouraged to avoid problems related to modified soil water con-
tent. Microbial respiration also is sensitive to [CO2] (MacFayden, 1973; Bekku et
al., 1997) and [O2] (Parr & Reuszer, 1959; van Cleve et al., 1979; Sharkov, 1984).
Simple calculations indicate that [O2] in a typical chamber should decrease by
only 0.035 m3 m–3 d–1 (0.2 m chamber height, 0.2 m soil depth, 19% [O2], 0.25 m3

m–3 air-filled porosity, 0.17 mg m–2 s–1 respiration rate, respiration ratio of 1). This
rate of [O2] decline should have no effect on the soil respiration rate for at least 2
d, if the threshold for such effects is 0.14 m3 m–3 as proposed by Greenwood
(1961) and Glinski and Stępniewski (1985).

In summary, we recommend:

1. To construct the chamber from materials that minimize !Ts for the
conditions of the study (Matthias & Peralta-Hernãndez, 1998).

2. To use a non-vented chamber design that minimizes the exchange of
enclosed air with ambient air in response to changes in Ta and Pa.
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3. To provide good seals between chamber components and deep collar
insertion to minimize CO2 gain or loss by leakage or lateral diffusion
beneath chamber walls.

4. To use an alkali solution with molarity between 0.5 and 1.0 and
capacity about three times greater than the amount of CO2 expected to
be emitted during the deployment period.

5. To perform measurements during at least 12 h and preferably 24 h to
reduce mean !Ts, as well as measurement bias due to the initial non-
steady-state condition.

6. To design the alkali trap such that [CO2]ch remains as close as possible
to [CO2]amb.

7. To test the absorption efficiency of the alkali trap during exposure to
non-turbulent air at [CO2]amb, and to measure [CO2] at or near the end
of the deployment period (Mina, 1962).

Non-Steady-State Chambers

Non-steady-state chambers also have been designated as closed or static
chambers and as the enrichment method. In contrast to SS chambers, emitted
CO2 accumulates in NSS chambers throughout deployment, and their estimate of
Fc depends on determining that rate of accumulation ($C/$t; μmol mol–1 s–1). The
estimate is calculated using:

Fc = $C/$t (V/A)/Mv [3]

where V (m3) is the chamber volume and Mv is determined at chamber air temper-
ature.

Because an increase in [CO2]ch has an immediate impact on the rate of CO2

emission at the soil surface (see previous section), the value of Fc obtained from
this equation is an underestimate of the soil respiration rate that the NSS chamber
was intended to measure. Furthermore, with increasing deployment time the CO2

concentration of a larger and larger volume of soil air is subject to alteration,
leading to a progressive decline in Fc. This pattern has been predicted by models
(Healy et al., 1996) and observed under field conditions (Fig. 12–3) (Makarov,
1959; Naganawa & Kyuma, 1991; Rochette et al., 1997). Rayment (2000)
described the interdependence of the soil [CO2] profile and $C/$t in terms of an
increase in effective chamber volume during deployment. The key to minimizing
this bias and obtaining more accurate estimates of soil respiration using NSS
chambers is to use the measured values of [CO2]ch to project a $C/$t representa-
tive of the pre-deployment soil [CO2] profile.

Several strategies have been proposed for minimizing bias in the measured
value of $C/$t within a NSS chamber. The most common is to estimate $C/$t as
early as possible during deployment. Usually, a simple mathematical model is
used to describe the time-dependence of changes in [CO2]ch, and $C/$t is esti-
mated from the slope of that curve extrapolated to the moment of chamber
deployment. Linear regression is often chosen for this purpose because of its sim-
plicity, and because it accommodates measurement variability and is easily
adaptable to significance testing. It is important to realize, however, that choosing
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this model may itself introduce bias, because the basic laws of time-dependent
diffusion dictate that the accumulation of CO2 within a NSS chamber must be
nonlinear (Matthias et al., 1978; Healy et al., 1996; Hutchinson & Livingston,
2001). Certainly, existing literature contains many examples of data for which a
plot of [CO2]ch vs. time appears to be linear, but these represent situations for
which the inherent curvature is simply too small to detect via linear regression
that is necessarily flawed by serial correlation in the data (Pedersen, 2000; Peder-
sen et al., 2001). Non-linear (quadratic, cubic, exponential) models often yield
less-biased estimates of $C/$t, but may exhibit extreme sensitivity to measure-
ment imprecision (Hutchinson & Mosier, 1981; Anthony et al., 1995; Pedersen,
2000; Pedersen et al., 2001). As a result, the best choice of a model for estimating
$C/$t must be a compromise that depends on the deployment duration, as well as
the number and frequency of [CO2]ch measurements, all of which are influenced
by whether a portable CO2 analyzer is used (FT-NSS) or not (NFT-NSS).

The design and principles of operation of NFT-NSS chambers have been
thoroughly reviewed in recent years (Livingston & Hutchinson, 1995; Hutchin-
son & Livingston, 2002), and much of that information applies to FT-NSS cham-
bers as well. Summarizing briefly, any change resulting in smaller effective CO2

diffusivity decreases the potential for chamber-induced measurement error
(including the inherent bias in estimating $C/$t). As a result, chamber perform-
ance is better in fine-textured compared with sandy soil, in compacted compared
with non-compacted soil, in wet compared with dry soil, and in uniform com-
pared with non-uniform soil with vertically aligned fractures, earthworm holes,
etc. Performance also is improved when the gas of interest has a small storage
coefficient (i.e., low water solubility and small tendency for rapidly reversible
surface adsorption), but it degrades rapidly as the storage coefficient increases.
Finally, the potential for chamber-induced measurement error is essentially inde-
pendent of the magnitude, kinetics, and/or distribution of the CO2 source. Users
of NSS chambers must remain aware of all these potential sources of measure-
ment error and be prepared to make compensating adjustments in deployment
time, chamber wall insertion depth, chamber height, etc., especially when the
effective CO2 diffusivity is large. Rationale and guidelines for making such
adjustments are discussed in detail in the reviews cited above. Because those
reviews are recent and thorough, we offer here only a few brief comments spe-
cific to the measurement of soil respiration using NFT-SS and FT-NSS chambers.

Non-Flow-Through

Soil-surface CO2 fluxes have been measured using NFT-NSS chambers
(Lundegårdh, 1926; Makarov, 1959; Gupta & Singh, 1977; Parkinson, 1981), but
this technique is more commonly adopted for measuring the fluxes of other gases
including N2O (Matthias et al., 1980; Mosier & Hutchinson, 1981) and CH4

(Crill, 1991; Striegl et al., 1992). This chamber type is not easily automated, so
few such systems have been proposed (Scott et al., 1999). In the absence of an
on-site gas analyzer, [CO2]ch must be measured in a minimum of three, but prefer-
ably four or more, discrete air samples taken at regular intervals during the
deployment period and then transported to the laboratory for analysis. The analy-
sis can be performed with an IRGA (Parkinson, 1981; Bekku et al., 1995), but is
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more often accomplished by gas chromatography (see previous section). To min-
imize the bias described above, we recommend using a non-linear model to esti-
mate $C/$t from these measurements, but realize that this approach may fail to
fully account for the rapid initial changes in Fc that occur shortly after chamber
placement. For example, Healy et al. (1996) predicted 13% underestimation of Fc

by a diffusion-based non-linear model applied to data from a perfectly mixed
NFT-NSS chamber deployed for 30 min on dry soil.

It is often argued that thermal buoyancy and/or external turbulence-induced
pressure fluctuations generally support uniform mixing in the headspace of a
NFT-NSS chamber; however, the large temporal variability in $C/$t measured in
air-flow-mixed FT-NSS chambers reported in Fig. 12–3 suggests that NFT-NSS
chamber users should sometimes consider using a fan. The decision to employ
forced head space mixing must be made carefully, because modeling studies indi-
cate that it may artificially enhance CO2 exchange rates when pre-deployment
mixing is poor, such as within a dense vegetation canopy on a calm cloudy day
(Hutchinson et al., 2000).

The deployment period for a NFT-NSS chamber should be as short as pos-
sible, but long enough to allow a measurable increase in [CO2]ch between consec-
utive sampling times. The minimum duration decreases with increasing Fc,
analytical precision and air mixing intensity, but increases with the chamber vol-
ume/area ratio. Based on the performance of the flame ionization detector
described in Table 12–3, the minimum deployment period of a well-mixed mid-
size NFT-NSS chamber (volume, 60 L; cross-section, 0.3 m2; height, 0.2 m; Fc,
0.1 mg m–2 s–1) would be approximately 20 s if four samples were taken; however,
NFT-NSS deployment periods are typically much longer for various reasons,
including to allow enough time for rotational sampling of several chambers
deployed simultaneously, to compensate for imperfect chamber mixing and to
permit measurable accumulation of other gases that are often determined in the
same air samples (Kessavalou et al., 1998). Such benefits of longer deployment
periods must be weighed against the risk of increasing the underestimation of Fc

(Healy et al., 1996). We strongly recommend against using deployment periods
longer than 1 h to avoid large changes in Ta and Ts, and to focus the sampling
effort on early times that are likely to best characterize the initial value of $C/$t.

Corrections in the measured values of [CO2]ch are required to account for
the effect of Ta and Ha variations during deployment. Equilibrating air samples at
room temperature and successive analysis of all samples from a given chamber
deployment will automatically correct for density variations associated with Ta

variations (Table 12–1). Because humidity is not usually measured in individual
NFT-NSS chamber air samples, we recommend drying the air samples prior to
analysis to account for dilution effects. Drying of air samples in pressurized glass
vials can be achieved by placing a desiccant such as magnesium perchlorate1 (Mg
(ClO4)2) in the vials prior to their evacuation (3 mg per 12-mL vial at 200 kPa).
The resulting overestimation of the CO2 mole fraction can be corrected as indi-
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cated in Table 12–2, if the mean chamber Ha is known. The latter value can be
measured on site using inexpensive handheld sensors or estimated from weather
data and adjusted by the user according to the soil climatic conditions at the
experimental site. Approximate values of Ha are adequate, because this correction
is relatively small; for example, at 20°C the maximum correction would be 1.2%
of the CO2 flux if Ha corresponding to 50% RH is assumed.

Flow-Through

Compared with a NFT-NSS chamber, the nearly continuous monitoring of
[CO2]ch by the on-site analyzer used in a FT-NSS chamber provides a more
detailed description of the pattern of CO2 accumulation. The greater number and
frequency of [CO2]ch measurements also facilitates using a shorter deployment
period. Other advantages include early detection of experimental problems that
would ultimately require the resulting data to be discarded, fewer problems
related to leakage and lateral diffusion beneath the chamber walls, and smaller
changes in air and soil temperature and humidity. Because of this powerful set of
advantages, this chamber type has recently experienced widespread adoption. In
fact, several commercial FT-NSS chamber systems for measuring soil respiration
have appeared within the last decade (e.g., Li-Cor Inc., Lincoln, NE; PP-Sys-
tems, Hitchin, England; BioScientific, Ltd., Hoddesdon, England; CID Inc.,
Camas, WA). Both commercial and custom FT-NSS chamber systems can be
adapted for near-continuous monitoring of Fc over daily, weekly, or even seasonal
and annual time periods (Loftfield et al., 1992; Goulden & Crill, 1997; Ambus &
Robertson, 1998).

Disadvantages of this chamber type include that the short deployment peri-
ods seldom allow for the simultaneous measurement of other gases like N2O and
CH4, and they focus the sampling effort on the period most likely to exhibit the
influence of soil disturbance, changes in the air mixing regime at the soil surface,
pressure effects, etc. Accordingly, we strongly recommend that the whole time
series of [CO2]ch measurements be stored for subsequent analysis and quality
assessment. All systems, whether commercial or custom, also should be tested
for leaks by sealing the chamber to a non-emitting surface (with the analyzer
pump running) and then blowing air with elevated [CO2] onto all tubing, connec-
tions, seals and joints. The internal tubing (including the pump) must be leak-
tested to avoid inducing negative or positive pressure disturbances and their
associated effects on Fc determination. Finally, the greater sampling efficiency of
this chamber type depends on adequate mixing of the chamber headspace;
although mixing generated by sample air flowing through the analyzer is usually
sufficient in small chambers, larger chambers may require use of an auxiliary fan.

Three approaches have been used for estimating $C/$t at the moment of
deployment of a FT-NSS chamber. The first is identical to that described for a
NFT-NSS chamber, but should yield better results in this case because of the
greater number of measurements during a typically shorter deployment period.
For example, simulation studies reported by Healy et al. (1996) suggest that
decreasing the length of the deployment period from 30 min to 1 min reduced the
underestimation of gas flux from soil with 30% air-filled porosity from 7.6 to
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1.7%; however, we recommend against using periods shorter than 5 min to facili-
tate detecting deployments when Fc has been significantly influenced by site dis-
turbance. Abrupt changes in $C/$t or strong non-linearity can occur during the
first 2 min of the deployment period as a result of chamber perturbations other
than the feedback effects of increasing [CO2]ch on the [CO2] profile. When $C/$t
does not remain nearly constant or decrease with time as predicted by the diffu-
sion theory (Healy et al., 1996), the data should be rejected.

A second approach that has been used for estimating $C/$t at the moment
of FT-NSS chamber deployment is to first reduce [CO2]ch below [CO2]amb and then
record $C/$t when [CO2]ch again reaches its pre-deployment level (Norman et al.,
1992). Reduction of [CO2]ch can be achieved by passing sampled air through a
chemical trap (soda lime) before returning it to the chamber. This approach pur-
portedly eliminates feedback effects of [CO2]ch on Fc and permits rapid measure-
ments (�2 min); however, it is only applicable to relatively small chambers
because reducing [CO2]ch requires that [CO2]ch × flow rate through the trap > Fc ×
A. Readers also are cautioned that the potential impacts of rapid fluctuations in
[CO2]ch on CO2 diffusion, and thus Fc, have not been fully investigated.

The third approach for estimating $C/$t in a FT-NSS chamber is a special
case of the first. It assumes linearity in a plot [CO2]ch vs. time across some pre-
selected fraction of the deployment period (usually 0.5 to 2 min) and uses the
mean slope over that period to estimate $C/$t. Field tests suggest that across
short deployments, a linear fit is probably the best estimator of $C/$t because of
the greater sensitivity of non-linear models to measurement imprecision and to
site disturbance effects (Rochette, data not shown). The smaller data set obtained
using this approach may sacrifice accuracy compared with the other two, but a
larger number of measurements can be performed in any given period of time.

Corrections are required to account for the effect of Ta and Ha variations on
the measured values of [CO2]ch. Built-in functions in most commercial analyzers
automatically correct for density variations associated with Ta variations (Table
12–1); if not, the ideal gas law or empirical corrections must be employed. Some
commercial soil respiration systems also account for the effects of variations in
Ha on the calculation of Fc (LI-6400 and 6200, Li-Cor Inc., Lincoln, NE). Other-
wise, one of the schemes described in Table 12–2 must be employed, depending
on whether the sample air is dried prior to analysis.

INTERCOMPARISON BETWEEN SYSTEMS

Lack of information regarding the accuracy of various measuring tech-
niques makes it difficult to compare Fc estimates among studies in which differ-
ent techniques were used. Under field conditions the true Fc is unknown, so it is
impossible to validate flux measurements obtained by any technique. As an alter-
native, laboratory studies have been conducted in which the performance of sev-
eral chamber types was compared against a known CO2 source. Bekku et al.
(1997) compared four chamber methods against Fc calculated from the amount of
glucose used by decomposers in an artificial medium sealed (no leaks) in an
enclosure. They found excellent agreement of FT-SS, FT-NSS, and NFT-NSS
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chambers with the reference Fc and suggested that low [CO2]ch (200 μmol mol–1)
was a possible cause for 30% overestimation by the NFT-SS chamber. Nay et al.
(1994) controlled [CO2] under an 18-cm layer of polyurethane foam and calcu-
lated CO2 flux through the foam using Fick’s law of diffusion. Their NFT-SS
chamber (24-h deployment) overestimated low Fc and underestimated high Fc,
probably because of lateral CO2 diffusion beneath chamber walls inserted only
2.5 cm into the foam. Their FT-NSS chamber (78-s deployment period; linear fit
of [CO2]ch vs. time) underestimated Fc by 15% at all Fc. Widén and Lindroth
(2003) recently described a chamber calibration system with the advantage that
its surface CO2 efflux rate can be determined directly, but their comparison of
chamber types was confounded by inability to always maintain zero pressure dif-
ference across the system’s 5-cm layer of quartz sand.

In addition to laboratory studies, several experiments have compared the
performance of different chamber types for measuring Fc under field conditions.
Of the studies listed in Table 12–4 about half involved comparing the older NFT-
SS technique with either a FT-NSS or FT-SS chamber. For this group, the NFT-
SS chamber estimate of Fc averaged 19% smaller (sd = 46%). The high
variability resulted largely from overestimation at low Fc and underestimation at
high Fc by the NFT-SS chamber, which is in agreement with the effects of [CO2]ch

observed by Nay et al. (1994). Two commercially available FT-NSS chamber
systems also have been compared in the field. In two independent studies, Fc

obtained using the SRC-1 chamber (PP Systems, England) was 1.49 (Le Dantec
et al., 1999) or 1.85 (Janssens et al., 2000) times greater than that measured by
the LI-6200 equipped with a 6000-09 chamber (LI-COR Inc., Lincoln, NE). Both
groups of authors attributed the disparity to differences in headspace air mixing
intensity.

Comparisons between chamber and micrometeorological techniques are
complicated by many factors, including the impossibility of simultaneously sam-
pling the same source area (due to contamination of the micrometeorological
source by the chamber operator), the large spatial variability of chamber meas-
urements, and the uncertainties associated with required air density corrections to
the micrometeorological estimates, which are often larger than Fc. Nevertheless,
all comparisons of FT-NSS chambers with micrometeorological techniques
showed reasonable agreement.

We compared FT-NSS and NFT-NSS chambers using 247 paired measure-
ments made during June and July 2000 (23 sampling days) following the applica-
tion of pig slurry (variable dosage on 12 plots with fine-textured soil kept free of
vegetation). The slurry resulted in uncommonly high Fc, which allowed com-
parisons across a wide range of fluxes (0.05 to 2.5 mg m–2 s–1). The two tech-
niques were compared as they are routinely used: 60-min deployment time for
the NFT chamber, which was sampled after 0, 20, 40, and 60 min, vs. 2-min
deployment time for the FT chamber with [CO2]ch measured every 1.5 s. Rate of
change of [CO2]ch ($C/$t) was determined using a quadratic equation for the NFT
system and by a linear equation for the FT system. The FT system (described ear-
lier) was operated with one fan running. The NFT system was identical except it
was not fan-mixed. For each comparison, Fc was measured first using the FT
chamber; NFT chamber measurements followed about 1 h later. There was a lin-
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Table 12–4. Intercomparisons of soil-surface CO2 flux estimates between several chamber and
micrometeorological techniques (FT = Flow-Through; NFT = Non-FT; SS = Steady-State; NSS =
Non-SS).

NFT-NSS vs. FT-NSS

NFT-NSS/FT-NSS Reference Comments

0.69; 0.77 Norman et al., 1997 NFT-NSS: linear interpolation between 
[CO2]ch at 0 and 10 min following 
deployment

0.91 Rochette (unpublished 
data, 2001) See Fig. 12–5

Average = 0.79 ± 0.11

NFT-NSS vs. NFT-SS

NFT-NSS/NFT-SS Reference Comments

1 Raich et al., 1990 Poor correlation between the two 
chambers

NFT-NSS vs FT-SS

NFT-NSS/FT-SS Reference Comments

No comparison found in the literature

NFT-SS vs. FT-SS

NFT-SS/FT-SS Reference Comments

1.0 @ 0.06 mg m–2 s–1 Ewel et al., 1987 Alkali trap = soda lime
0.5 @ 0.24 mg m–2 s–1

0.61 Kucera and Kirkham, 1971 Alkali trap = KOH

2 Nakadai et al., 1993 Alkali trap = KOH in soaked sponge 
maintained low [CO2]ch

1.0 @ 0.05 mg m–2 s–1 Cropper et al., 1985 Alkali trap= soda lime; same techniques 
0.5 @ 0.22 mg m–2 s–1 as Ewel et al., 1987

Average = 0.94 ± 0.57

NFT-SS vs FT-NSS

NFT-SS/FT-NSS Reference Comments

1.83 Janssens et al., 2000 Alkali trap = soda lime maintained low 
[CO2]ch; used LI-COR chamber as 
reference

1.0 @ 0.03 mg m–2 s–1 Janssens and Ceulemans, Alkali trap = soda lime; used PP Systems 
0.66 @ 0.26 mg m–2 s–1 1998 chamber as reference

0.67 @ 0.06 mg m–2 s–1 Norman et al., 1992 Alkali trap = KOH; used LI-COR 
0.3 @ 0.22 mg m–2 s–1 prototype chamber as reference

0.75 @ 0.12 mg m–2 s–1 Rochette et al., 1992 Alkali trap = NaOH; used custom FT-NSS 
0.61 @ 0.15 mg m–2 s–1 as reference

0.9 to 1.1 Rochette et al., 1997 Alkali trap = NaOH; used custom FT-NSS 
as reference; several comparisons

0.8 @ 0.09 mg m–2 s–1 Haynes and Gower, 1995 Alkali trap = soda lime; used LI-COR 
0.5 @ 0.22 mg m–2 s–1 chamber as reference

0.4 @ 0.07 mg m–2 s–1 Jensen et al., 1996 Alkali trap = NaOH; used PP Systems 
0.2 @ 0.22 mg m–2 s–1 chamber as reference

Average = 0.75 ± 0.42



ear relationship between the two estimates with a slope of 0.91, r2 of 0.95 and
standard error of 0.096 (Fig. 12–6). We computed the ratio of the NFT to FT esti-
mate for each pair and assigned it to one of several groups, each representing a
different range of flux intensity. The ratios averaged 0.938 (±0.341) over all
groups. Group means were also <1 except for fluxes between 0.08 to 0.12 mg m–2

s–1 and reached their lowest value (0.75) at about 0.2 mg m–2 s–1. In a separate
field comparison Norman et al. (1997) also reported smaller Fc estimates from
NFT compared with FT chamber systems, but they found the difference to be 30
to 50% instead of the approximately 7% difference reported here. A 20% under-
estimation of Fc by NFT-NSS chambers compared with FT-NSS is consistent
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FT-NSS vs FT-SS

FT-NSS/FT-SS Reference Comments

1.14 Longdoz et al., 2001 FT-NSS= LI-COR

0.93 Norman et al., 1997 FT-NSS= LI-COR

Average = 1.04

FT-NSS vs Micromet

FT-NSS/micromet Reference Comments

0.82, 1.06, 1.0, 0.9 Dugas, 1993 Bowen-Ratio system; 0.75-L chamber; 
Fc < 0.057 mg m–2 s–1.

1.0 Norman et al. (1997) Eddy covariance was corrected for plant 
contribution to Fc

1.04 Rochette et al. (1997) Eddy covariance system; Large variability

Average = 0.97 ± 0.09

Fig. 12–6. Comparisons between flow-through (FT) and non-flow-through (NFT) non-steady-state
chamber soil-surface CO2 flux measurements.



with model predictions of differences between Fc estimates based on short and
long deployment times (Healy et al., 1996).

Intercomparisons between chamber types should be interpreted with cau-
tion for several reasons. First, investigators rarely have the same experience and
expertise with all techniques being compared, so the different measurement sys-
tems may not be equally optimized; e.g., Norman et al. (1997) reported intercom-
parison results using NFT-NSS chambers that were not optimized for CO2 flux
measurements. Second, the various chamber types don’t perform equally well
under all conditions. In fact, each type is best adapted for use in specific situa-
tions, so the conditions of the comparison may bias the results. For example,
NFT-SS chambers deployments of only a few hours are more likely to be signifi-
cantly influenced by their initial non-steady-state condition than more typical 12-
or 24-h deployments. Thus, they have an inherent disadvantage in comparisons
across short deployment periods (Rochette et al., 1992).

Spatial and Temporal Integration

When appropriate precautions are observed, chambers provide reliable
estimates of soil-surface CO2 fluxes; however, most chambers are small and are
deployed for short periods of time, so those estimates must often be integrated
over space and time to satisfy the research objectives. Soil respiration varies in
both time and space in response to changes in soil heterotrophic activity and root-
rhizosphere respiration. Soil heterotrophic decomposition processes are regulated
by several factors, including the quantity and quality of soil organic substrates
(soil organic matter, litterfall, crop residues, organic amendments, etc.) and soil
disturbance (tillage, freeze-thaw, rewetting, etc.), while root-rhizosphere respira-
tion depends on root biomass, phenology, soil fertility, etc. (Hanson et al., 2000).
Moreover, both respiration activities are modulated by soil physical factors such
as temperature, water content and permeability to water and gases, all of which
vary to a great extent in both space and time in most ecosystems. Thus, spatial
and temporal integration of instantaneous Fc values from point sources is a chal-
lenge for chamber users. In this section, we briefly review how the selection of an
adequate chamber type, chamber design and sampling methodology can mini-
mize the resulting errors when spatial and temporal integration of Fc are esti-
mated from individual chamber measurements.

Spatial Integration of Fc Measurements

Because chamber measurements are time consuming and labor intensive,
sampling schemes must be chosen to obtain the information required by the
research objectives using a minimum number of measurements. Selecting the
appropriate chamber geometry and sampling strategy are key factors for achiev-
ing this goal.

Chamber geometry can address spatial variability problems at small scales
(<1 m). For example, in a row crop, root growth patterns and soil compaction in
the inter-row spaces often result in an Fc gradient perpendicular to the plant rows
(Rochette et al., 1991). If the research objectives require describing that gradient,
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long and narrow rectangular chambers are most appropriate. The chamber width
(perpendicular to the row) should be much smaller (three times or more) than the
width of the inter-row space, while the dimension parallel to the row should be as
long as possible to integrate random variability. If description of the inter-row
gradient in Fc is not required, then chambers covering the whole inter-row are
most efficient. Such chambers could be square and deployed from one plant row
to the next, or long (equal to the inter-row width) and narrow (equal to the dis-
tance between plants) and deployed centered on the row. In natural ecosystems,
random plant location, roots and rocks are additional factors that dictate chamber
geometry; however, the chamber should always cover an area as large as practical
while providing information at the smallest scale for which it is needed. Using a
chamber with geometry that is not optimized to the research objectives and ter-
rain characteristics results in wasted resources and a loss of accuracy in spatial
integration. Selecting the most appropriate chamber characteristics can make the
difference between a successful experiment and a frustrating experience.

Choosing a sampling strategy should be guided by the need to provide
affordable estimates of Fc at the scale of interest. This scale can vary from small
agronomic plots (a few m2) to agricultural fields or natural ecosystems (a few ha).
Soil is not a homogeneous medium and most ecosystems can be viewed as a
mosaic of CO2 sources of various intensities. A sampling strategy that accounts
for the proportional contribution of these different sources to total ecosystem Fc

requires knowledge of the spatial patterns of soil respiration. Such knowledge
can be obtained from an exploratory survey prior to the experiment or by analysis
of the spatial variation in factors that regulate respiration. Rochette et al. (1991)
showed that spatial patterns of soil respiration vary considerably during the grow-
ing season, even in an ecosystem as homogeneous as a wheat field, so the most
appropriate sampling strategy also may change as a function of time.

Spatial variation in Fc occurs at scales ranging from centimeter to kilometer
and may be random or spatially organized. The most appropriate sampling strat-
egy in ecosystems where Fc varies randomly is to perform a sufficient number of
randomly distributed chamber measurements to yield an estimate of Fc that has an
acceptable level of confidence. In small non-vegetated plots one large chamber
may provide a valid estimate of Fc, but in complex ecosystems a large number of
measurements may be required to reduce the coefficient of variation below 20%
(Rochette et al., 1991). When a large number of measurements is needed in a mid-
size ecosystem (<1 ha), 2-min deployments of FT-NSS chambers are probably
most appropriate; however, it may be impossible to sample a large ecosystem
within a reasonable interval using one FT-NSS chamber, so in this case simultane-
ous deployment of many NFT-SS or NFT-NSS chambers may represent a better
option, if sufficient labor is available. In ecosystems where Fc variations are spa-
tially organized (Davidson et al., 1998), a stratified sampling strategy should be
used; i.e., the number of chambers per stratum is weighted according to the area
ratio of each stratum to the entire ecosystem. Finally, spatial variability can some-
times be reduced prior to the experiment; e.g., in an experiment designed to char-
acterize the effects of an organic addition (manure, crop residues, etc.), applying
the exact dose inside the chamber may reduce spatial variability compared with
deploying the chamber after a broadcast application (Rochette et al., 2000).
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Temporal Integration of Fc Measurements

Soil respiration varies in time according to astronomical rhythms as well as
to soil disturbance, rainfall, severe drought, and other sudden or unusual changes
in substrate supply or environmental conditions (Grahammer et al., 1991; Akin-
remi et al., 1999). In the absence of such changes, daily minimum and maximum
Fc are usually recorded in early morning and afternoon in response to variations
in Ts (Davidson et al., 1998). Plant photosynthesis reinforces this cycle by
increasing the supply of substrate for root-rhizosphere respiration during day-
time. Changes in Ts also govern seasonal variation in Fc, which is therefore maxi-
mal in mid-summer and much lower in early spring and late fall (Rochette &
Gregorich, 1998). Respiration can be assumed to be zero in frozen soils, but may
continue below the frozen layer as evidenced by the observation that Fc is rarely
zero during winter at northern latitudes (Sommerfeld et al., 1993). Daily Fc is
often estimated from a single measurement made at the time of day when Fc is
believed equal to its daily mean value—variously reported as early morning and
evening (Akinremi et al., 1999) or mid-morning and late afternoon (Rochette et
al., 1997; Davidson et al., 1998). Annual estimates can be obtained by linear
interpolation between representative daily values estimated weekly or biweekly.

Superimposed on daily and seasonal cycles are short periods of rapid
change in Fc that occur in response to disturbances of the soil physical environ-
ment. For example, a short-lived but intense burst in Fc often follows tillage, as
soil CO2 escapes through the large pores that are created (Reicosky & Lindstrom,
1993; Rochette & Angers, 1999). High CO2 emissions also occur when soils are
amended with large quantities of decomposable organic substrates (Rochette et
al., 2000), or when dry soils are rewetted (Rochette et al., 1991). In contrast, Fc

can be very small in saturated soils following heavy rainfall. Snowmelt can have
a strong impact on soil N dynamics, and high N2O fluxes have been reported at
spring thaw (Wagner-Riddle et al., 1997). Effects of snowmelt on Fc are not as
clear but may be significant under certain conditions. These and other transient
fluxes can induce significant bias when temporal integration is performed by lin-
ear interpolation between weekly or biweekly measurements. Such episodes
should be documented with more frequent sampling and excluded from the deter-
mination of empirical relationships between Fc and Ts or Hs.

Automated FT-SS (Rayment & Jarvis, 1997; McGinn et al., 1998) and FT-
NSS (Loftfield et al., 1992) chambers provide detailed description of the temporal
variability in Fc; however, technical constraints associated with sharing the gas ana-
lyzer limit the number of chambers and their spatial distribution. A combination of
automated and portable chamber systems is often needed to obtain adequate spatial
and temporal resolution of Fc. NFT-SS chambers also can provide valuable infor-
mation regarding average ecosystem Fc, especially when they are carefully cali-
brated against other chamber techniques (Jannssens & Ceulemans, 1998).

Modeling Fc

Spatial and temporal integration also can be accomplished by modeling
approaches, which have the advantage that monitoring temporal and spatial vari-
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ations in a few controlling variables is often easier than measuring Fc; however,
because soil respiration is the result of complex interactions between many biotic
and abiotic factors, sophisticated mechanistic soil respiration models require
more detailed information than is easily available at most research sites. Alterna-
tive simple descriptions of the dependence of Fc on Ts usually provide adequate
integration capability, because Fc is so strongly governed by Ts in the absence of
water stress (Rochette & Gregorich, 1998; Davidson et al., 1998; Buchmann,
2000; Ahrens et al., 2000). Under limiting soil water content, Hs has a profound
effect on the Fc–Ts relationship (Linn & Doran, 1984; Grahammer et al., 1991;
Norman et al., 1992), which can be included in the model via a mathematical
function modulating the effect of Ts (Davidson et al., 1998). Nevertheless, all
such empirical models are site-specific (and sometimes year- or season-specific),
because other soil and vegetation factors are embodied in the model coefficients
(Lloyd & Taylor, 1994; Palmer et al., 1996). To avoid bias, the model must use a
Ts that is representative of the soil layer where respiration occurs (<30 cm) and
must account for diurnal cycles of Fc and Ts. Suitability of the model coefficients
should be checked at regular intervals to account for changes in substrate avail-
ability, root-rhizosphere respiration, and other factors that are unlikely to remain
constant during the growing season.

CONCLUSIONS

Nearly all measurements of Fc reported in the literature were obtained
using chambers, which are likely to remain the method of choice in the foresee-
able future. Alternative methods cause less soil and atmospheric perturbations
but offer greater uncertainty and/or greater cost and technical complexity.
Approaches based on Fick’s first law of diffusion (Rolston, 1986) are plagued by
imprecision in estimating soil gas diffusivity and by difficulty in determining the
[CO2] gradient, especially when respiration activity is non-uniformly distributed
as a function of soil depth. Use of this approach is likely to remain limited to spe-
cial situations such as winter emission through a physically uniform and biologi-
cally inactive snowpack. The eddy covariance technique can provide reliable
monitoring of net ecosystem CO2 fluxes when used above large uniform surfaces
(Rochette et al., 1995); however, it has limited value for estimating Fc in even
simple ecosystems, because of uncertainty related to separating CO2 sources and
sinks over the measured surface (Norman et al., 1992), of using air density cor-
rection terms that are often larger than Fc and of the violation of assumptions
such as horizontal homogeneity of the source area.

Chambers are, of course, also not exempt from methodological problems,
and in this chapter we reviewed known sources of chamber-induced errors in Fc

estimates. Despite the multiplicity and diversity of potential errors, however, we
believe their overall impact on chamber-based Fc estimates will be minimal if the
information summarized herein is used to select the chamber design best suited
to the research objective and to establish the optimum protocol to be followed
before, during, and after the measurement period. As soil respiration measure-
ments become part of an increasing number of field studies, scientists from vari-
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ous backgrounds and often with limited knowledge of soil physics and agromete-
orology will begin measuring Fc using chamber techniques. We hope that the the-
oretical considerations and practical recommendations given in this chapter will
help them to ensure that their Fc estimates have the highest quality attainable.
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