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Aquatic sediments form the ultimate repositories of past and
ongoing discharges of hydrophobic organic compounds

(HOCs) such as polychlorinated biphenyls (PCBs), many
pesticides, and dioxins, as well as mercury (Hg) and methylmer-
cury (MeHg). These sediment-bound pollutants serve as long-
term exposure sources to aquatic ecosystems. Approximately
10% of the sediment underlying the United States' surface water
is sufficiently contaminated with toxic pollutants to pose poten-
tial risks to fish and fish-eating wildlife and humans.1 Remedia-
tion of contaminated sediments remains a technological chal-
lenge. Traditional approaches do not always achieve risk reduc-
tion goals for human health and ecosystem protection and can
even be destructive for natural resources. Though removal of
contaminated sediment by dredging and disposal in a secure
landfill can be effective under certain conditions, a recent study
by the National Research Council found a wide range of
outcomes.2 Among the problems with dredging are unfavorable
site conditions, resuspension of contaminated sediment into the
water column, and contaminated sediment residuals. While cap-
ping contaminated sediment with clean sand may be a viable
remedial option at some sites, often the alteration of sediment
bathymetry may not be acceptable and the control of contami-
nant transport through the cap can be a challenge. In addition,
both dredging and conventional capping result in the destruction
of existing benthic ecosystems. Therefore, development of new
techniques offering greater flexibility in contaminated sediment
management and avoiding some of the problems with conven-
tional dredging and capping is highly desirable.

This feature article summarizes research by several groups in
the U.S. and Europe to develop a novel approach for in situ

sediment remediation that minimizes or eliminates some of the
problems with traditional technologies. The efforts involve
introducing sorbent amendments into contaminated sediments
that alter sediment geochemistry, increase contaminant binding,
and reduce contaminant exposure risks to people and the en-
vironment. We present here a description of recently concluded
laboratory studies and a brief outline of ongoing pilot-scale trials,
field challenges, regulatory issues, and further research needs.

’BIOAVAILABILITY OF SEDIMENT-BOUND LEGACY
CONTAMINANTS

Sediment HOCs can be taken up by aquatic or benthic
organisms through ingestion and dermal absorption, and subse-
quently passed on to higher organisms and humans. For both of
these pathways, the uptake depends on the bioavailability of
contaminants in sediment, which is determined by how strongly
the contaminants are bound to the sediment particles.3,4 Strong
binding in the sediment matrix reduces contaminant bioavail-
ability to organisms. Work in the last two decades has improved
our understanding of how sediment geochemistry controls
contaminant bioavailability. For example, black carbonaceous
particles in sediments such as soot, coal, and charcoal very strongly
bind HOCs, and their presence in sediments (both natural and
anthropogenic) reduces exposure and risk,5,6 often by one order of
magnitude or more compared to natural organic matter.

’CONTAMINANT SEQUESTRATION BY ACTIVE
AMENDMENTS

“Natural” contaminant sequestration in native carbonaceous
particles can be greatly enhanced by the addition of clean,
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manufactured carbonaceous materials into sediments, such as
activated carbon (AC). AC is produced from coal or biomass
feedstock and treated at high temperature to produce a highly
porous structure with great sorption capacity. Activated carbons
have been used widely for drinking water purification and human
poisoning abatement. McLeod et al 7 showed in clam particle
feeding studies that the biouptake of a tetrachloro-PCB in the gut
was only 1-2% for AC-sorbed PCBs, compared to 90% for
diatom-sorbed ones. As illustrated in Figure 1, amending or thin-
capping the bioactive surface layer of sediment with AC will
transfer contaminants from the sediment to the strongly binding
AC particles, reducing bioavailability to benthic organisms and
contaminant flux into the water column, and thus accumulation
in the aquatic food-chain. Sediment turnover by benthic organ-
isms and other natural mixing processes can further incorporate
the added AC into deeper or newly depositing sediment layers.11

In depositional sediment environments, where legacy contami-
nants are often found, over time new clean sediment can cover
the AC-treated sediment layer (Figure 1).

Laboratory tests with contaminated sediment show proof-of-
concept through reductions in HOC bioavailability (Figure 2).
These studies evaluated HOC bioavailability through measure-
ment of equilibrium aqueous concentration and biouptake in a
range of benthic organisms. The study sediments were all field-
collected and had aged for decades in freshwater or marine
environments. HOC concentrations in sediment porewater
provide a useful assessment of the potential sediment-to-water
flux, especially when legacy contaminated sediments are the
primary pollution source. Sediment porewater concentration is
also predictive of HOC biouptake in benthic organisms.19 Tests
with a range of field sediments showed that AC amendment in
the range of 1-5% reduces equilibrium porewater concentration

Figure 1. Conceptual model of how sorbent amendment of sediment reduces contaminant exposure pathways of benthic organism accumulation and
flux from the sediment bed.

Figure 2. Percent reduction ranges of aqueous equilibrium concentration and contaminant biouptake in different laboratory studies of activated carbon
amendment to sediments and soils from the field. These studies range from freshwater to marine sediments and cover a wide range of benthic organisms.
The dose of activated carbon used in these laboratory experiments typically ranged from 1 to 5% by dry sediment weight (29).
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of PCBs, PAHs, DDT, dioxins, and furans in the range of
70-99%, thus reducing the driving force for the diffusive flux
of HOCs into the water column and transfer into organisms.
Most of the studies using benthic organisms show a reduction of
biouptake of HOCs in the range of 70-90% compared to
untreated control sediment (Figure 2).

Recent work on metal-contaminated sediments demonstrated
reduced biouptake of cadmium (Cd) 20 and Hg/MeHg 21 after
amendment of AC and thiol-functionalized silica into sediments.
Significant reductions in Hg from water may be feasible with
polysulfide-rubber polymer-coated AC.22 AC mixed into sedi-
ment showed about one order of magnitude weaker sorption
than pure AC for HOCs,13,23 probably attributable to sorptive
competition with native HOCs and/or biomolecules or pore
clogging.24 In total, the varied laboratory results demonstrate
that the effectiveness of sorbent amendment on lowering con-
taminant bioavailability increases with decreasing AC particle
size, increasing dose of AC, greater mixing, and contact time.
Biodynamic modeling with species-specific physiological param-
eters was able to describe invertebrate tissue concentrations and
response to reduced uptake efficiency and pore water concentra-
tions for strongly bound contaminants.8,23,25 There are many
specialty carbons available in the market, but those most suitable
for use in sediment remediation will have good sorption proper-
ties for the target contaminant (PCBs or Hg for example), will
need to have no inherent toxicity, and will need to be low-cost.
While some studies14,22 have compared different types of AC for
use in sediment remediation, there is potential for more research
in this area.

’CURRENT STATUS OF TECHNOLOGY DEVELOPMENT:
ONGOING PILOT-SCALE DEMONSTRATIONS

Motivated by encouraging bench-scale results, pilot-scale field
trials were recently conducted at five sites in the U.S. and Norway
as shown in Figure S1 and Table S1 in the Supporting Informa-
tion. These field experiments are evaluating different methods of
applying AC to sediments to reduce the bioavailability of
hydrophobic contaminants. The field sites span a range of
contaminated aquatic environments: (1) tidal mudflat, (2) fresh-
water river, (3) marine harbor, (4) deep-water fjord, and (5) tidal
creek andmarsh. Each site poses varied engineering challenges in
the application of AC and monitoring of the effectiveness. The
key objectives of the pilot-scale experiments are to study the
feasibility of application of AC using large-scale equipment in
contaminated field sites, persistence of the AC and its binding
potential after application to sediment in the natural environ-
ment, effectiveness of the AC in reducing contaminant bioavail-
ability, reductions of sediment porewater contaminant con-
centrations and sediment-to-water fluxes, and effects of AC
addition on the existing benthic community.

A major challenge in pilot evaluations is accounting for
transient and/or long-term changes that take place naturally in
the open environment. Pilot-studies by design occupy a relatively
small footprint in a large contaminated sediment area that
typically is overlain by contaminated water mass. Thus, in situ
measurements of pore water concentrations at the sediment
surface or bioaccumulation assessments using benthic organisms
exposed to contaminants in the water phase (e.g., filter-feeding
bivalves) can be impacted by the contaminated water above the
treatment zone. Finally, over time the small pilot-treatment areas
may become covered with newly deposited, contaminated

sediment from the surrounding area or upstream locations.
Some of the challenges in field assessments can be addressed
through appropriate study designs:
(1) Observations of changes in bioaccumulation at treatment

sites need to be contrasted to ongoing changes at properly
selected background control sites.

(2) Using deposit-feeding organisms for biomonitoring is
preferable to using filter feeders for assessing pilot-scale
remediation.

(3) In situ assessments should preferably have an ex situ
laboratory component to delineate overlying water and
depositional impacts.

(4) The number of replicate samplings should be large
enough to account for spatial variability at the site.

(5) Multiple lines of evidence for exposure reduction, includ-
ing physical, chemical, and biological, need to be pursued
to obtain confidence in the observations.

’FINDINGS FROMHUNTERS POINT AND BIG PICTURE

Results from the first pilot study at Hunters Point in San
Francisco Bay were recently published.26,27 The Hunters Point
study found that AC can be placed in sediment in a large scale, is
physically stable in the environment, and remains effective at
binding contaminants in sediments several years after applica-
tion.27 The AC applied at Hunters Point did not show a sig-
nificant impact on benthic community as judged by the diversity
of species and their overall abundance. This community-level
observation from the field is in contrast to a laboratory study
where potential toxic effects of AC on benthic organisms were
indicated.28

Typical AC dosing at the various test sites was 2-5% by
weight of dry sediment (matching the native organic carbon
content of sediment) in the top 10-30 cm of sediment. Even
under poor mixing conditions, mass transfer of PCBs to a passive
sampler in sediment was greatly reduced in the presence of AC.29

Homogeniety of AC distribution and mixing regime will influ-
ence the time required to observe full treatment benefits under
field conditions (Figure 3). Small-scale heterogeneity of sorbent
distribution at the scale of 1 cm will extend the time required,
whereas porewater movement by advection or mechanical dis-
persion and/or bioturbation will enhance contact between
sediment and the added sorbents.

The amount of AC required to remediate a site with 5% in the
top 10 cm of bioactive sediment is 35,000 kg/ha which amounts
to about $75,000/ha at a bulk cost of AC of about $2.2/kg. Cost
of AC application will depend on several factors including the
need for mixing into sediment, and whether the application and
mixing can be accomplished in an exposed sediment surface or
needs to be performed underwater. The full cost of AC applica-
tion is being evaluated through the ongoing pilot studies. By
comparison, dredging and disposal cost for the Hudson River
cleanup has been projected at $2.5M/ha 30 and reported actual
for phase I at $15M/ha.31 Thus, the material cost of AC required
for treatment is at least an order of magnitude lower than typical
full cost of remediation by dredging and disposal.

The technology is especially attractive at locations where
dredging is not feasible or appropriate, such as (i) under piers
and around pilings, (ii) in sediment full of debris, (iii) in areas
where overdredging is not possible, and (iv) in ecologically
sensitive sites such as wetlands. In situ amendments can also
be used in combination with other remedies. For example,
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sorbent amendments can be applied during and immediately
after a dredging process to minimize aqueous contaminant
release from resuspended sediments and residuals, or as an
amendment to sand caps to enhance retardation capacity.

’POTENTIAL USE OF BIOCHARS AND CARBON SE-
QUESTRATION

Charcoals, especially anthropogenic ones created under high-
temperature conditions (“biochar”), are known to persist for
thousands of years in soils and sediments, indicating carbon
storage opportunities for greenhouse gas abatement.32,33 AC
manufactured from biomass waste products such as pine chips,
corn stalk, and poultry litter thus offer an exciting opportunity for
efficient resource utilization and carbon sequestration along with
sediment remediation.34 New types of ACsmade from renewable
resources are being developed and are claimed to have superior
metal sorption characteristics.35 In addition, the U.S. Environ-
mental Protection Agency’s new Green Remediation strategy
aims to minimize the environmental footprints of a cleanup.36

Therefore, technologies that can diminish or reverse the carbon
footprint while reducing risks will likely be favored in the future.
Major unknowns are currently whether a technology can be
developed to place (activated) biochars on a sediment bed, and
to what extent thesematerials can be effective in reducing organic
and metal contaminant bioavailability in sediments.

’POTENTIAL BARRIERS TO USING IN SITU AMEND-
MENTS AND FUTURE RESEARCH NEEDS

Sorbent amendment does not decrease total sediment con-
centrations of contaminants. Rather, it decreases contaminants
available for biouptake and transport to surface- and ground-
water. Sediment risk management is often based on bulk total
concentrations and chemical mass with these measures being
considered indicative of exposure.5,37 Although regulatory con-
fidence and comfort are building for the explicit consideration of
bioavailability in assessments and remedial decisions, there is still
a bias against remedies other than removal. There are also natural
perceptions and regulatory precedents to “get it out”. This
surgical view of sediment remediation is appropriate in many
cases but there are numerous situations where removal is not

warranted and can be destructive or potentially ineffective for risk
reduction. A more balanced evaluation of less invasive remedial
measures such as in situ remedies can be achieved by broadening
the decision context to include all relevant factors, such as short-
and long-term ecological impacts and benefits, residual impacts,
and performance. Comparisons of alternatives could involve
comparative life cycle assessments.

The pilot studies are starting to provide valuable information
to address concerns about long-term effectiveness both in terms
of physical stability of the AC and chemical permanence of the
remedy. To gain acceptance and advance the technology, it is
likely that pilot-scale studies will have to lead to full-scale
experimental remedies at a few sites with long-term monitoring
to evaluate effectiveness not only near the base of the food chain,
but also into evaluating recovery of fish and higher animals that
are often the drivers for risk management.

To that end, further research is needed in the following areas:
(1) development of novel amendments that can actively bind

contaminants of concern other than HOCs;
(2) improved fundamental understanding of mechanisms of

HOC binding to AC, especially in the sediment matrix
where fouling can be a concern;

(3) development of efficient, low-impact deliverymethods for
amendments into sediments;

(4) pilot-scale studies at various hydrodynamic and ecological
environments to understand where the technology is best
suited;

(5) assessment of ecosystem recovery;
(6) potential for microbial processes to degrade sorbed con-

taminants
(7) full-scale demonstration to go beyond what can be

learned through small-scale pilot studies;
(8) development of modeling tools to interpret field results,

understand food web transfer, predict long-term perfor-
mance, and optimize AC dose and engineering methods
of application;

(9) life-cycle analyses including carbon footprints of different
sediment remediation technologies.

’ASSOCIATED CONTENT

bS Supporting Information. A summary of ongoing pilot
demonstration projects. This information is available free of
charge via the Internet at http://pubs.acs.org/.
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