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Abstract. Hydraulic tomography (i.e., a sequential aquifer test) has recently been 
proposed as a method for characterizing aquifer heterogeneity. During a hydraulic 
tomography experiment, water is sequentially pumped from or injected into an aquifer at 
different vertical portions or intervals of the aquifer. During each pumping or injection, 
hydraulic head responses of the aquifer at other intervals are monitored, yielding a set of 
head/discharge (or recharge) data. By sequentially pumping (or injecting) water at one 
interval and monitoring the steady state head responses at others, many head/discharge 
(recharge) data sets are obtained. In this study a sequential inverse approach is developed 
to interpret results of hydraulic tomography. The approach uses an iterative geostatistical 
inverse method to yield the effective hydraulic conductivity of an aquifer, conditioned on 
each set of head/discharge data. To efficiently include all the head/discharge data sets, a 
sequential conditioning method is employed. It uses the estimated hydraulic conductivity 
field and covariances, conditioned on the previous head/discharge data set, as prior 
information for next estimations using a new set of pumping data. This inverse approach 
was first applied to hypothetical, two-dimensional, heterogeneous aquifers to investigate 
the optimal sampling scheme for the hydraulic tomography, i.e., the design of well spacing, 
pumping, and monitoring locations. The effects of measurement errors and uncertainties 
in statistical parameters required by the inverse model were also investigated. Finally, the 
robustness of this inverse approach was demonstrated through its application to a 
hypothetical, three-dimensional, heterogeneous aquifer. 

1. Introduction 

Accurate predictions of water and solute distributions and 
movement in geological formations require detailed knowl- 
edge of the spatial distribution of the hydraulic properties of 
the formations [Yeh, 1992, 1998]. Conventional aquifer tests 
(also known as pumping tests) assume aquifer homogeneity 
and yield effective hydraulic conductivity and the storage co- 
efficient for an equivalent homogeneous aquifer. These hy- 
draulic parameters are average properties of the aquifer over a 
large volume [Butler and Liu, 1993] and do not provide infor- 
mation of spatial distribution of the hydraulic conductivity 
within the volume. On the other hand, measurement of hy- 
draulic conductivity of small-scale samples at a large number of 
locations is time-consuming, costly, and impractical. 

To circumvent these difficulties and to efficiently gain infor- 
mation of the spatial distribution of hydraulic conductivity, the 
geophysical tomography concept has recently been employed 
[Gottlieb and Dietrich, 1995; Butler et al., 1999]. Specifically, 
fully screened wells are segregated into many vertical intervals 
using packers. Water is pumped from or injected into an aqui- 
fer at one of the intervals to create a steady flow condition. 
Hydraulic head responses of the aquifer at other intervals are 
then monitored, yielding a set of head/discharge (or recharge) 
data. By sequentially pumping (or injecting) water at one in- 
terval and monitoring the steady state head response at others, 
many head/discharge (or recharge) data sets are obtained. 
Such a sequential aquifer test is referred to as hydraulic to- 
mography. This new field method has significant advantages 
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over traditional pumping tests. For instance, hydraulic tomog- 
raphy can provide detailed information about vertical and lat- 
eral pressure head responses induced by pumping at a given 
location. Furthermore, by changing the position of the pump in 
the well, many sets of aquifer responses to pumping at differ- 
ent locations can be obtained. Such a large number of data sets 
may reduce the nonuniqueness issue of the inverse problem 
and may reveal the details of a heterogeneous hydraulic con- 
ductivity field. 

Several researchers have recently investigated this idea of 
hydraulic tomography. For example, Gottlieb and Dietrich 
[1995] proposed a method of hydraulic tomography for iden- 
tifying the permeability distribution in a hypothetical, two- 
dimensional saturated soil. In their study they used two bore- 
holes to create hydraulic dipoles. The positions of source and 
sink are varied over both boreholes. Pore water pressure 
changes along the vertical were monitored in monitoring wells 
at other locations. They subsequently applied a least squares- 
based inverse approach to the pressure data to produce an 
image of the spatial distribution of hydraulic conductivity. But- 
ler et al. [1999] applied this hydraulic tomography concept to 
networks of multilevel sampling wells. They developed new 
techniques for measuring drawdown data at a scale that had 
previously been unobtainable. These new techniques greatly fa- 
cilitate the implementation of hydraulic tomography in the field. 

Hydraulic tomography can yield many useful sets of second- 
ary information, namely head responses, that can be used to 
identify heterogeneity of the aquifer. Still, a reliable and effi- 
cient inverse methodology is required to decipher the infor- 
mation so that a reliable image of the hydraulic conductivity 
field can be obtained. Classical inverse methodologies are 
known to have many difficulties [Yeh, 1986]. They also confront 
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an insurmountable computational burden when they are ap- 
plied to estimate detailed hydraulic properties in three- 
dimensional geological formations [Kitanidis, 1997]. Conse- 
quently, few classical inverse models have been applied to 
identify small-scale heterogeneity in three-dimensional geolog- 
ical media. More importantly, the abundance of hydraulic head 
information generated by hydraulic tomography presents an 
even greater challenge for the classical inverse methodologies. 

In the past few decades, cokriging has been used to estimate 
hydraulic conductivity fields from scattered measurements of 
pressure head in saturated flow problems [Kitanidis and Vom- 
voris, 1983; Hoeksema and Kitanidis, 1984]. However, cokriging 
is a linear estimator, and its application is limited to mildly 
nonlinear systems, such as groundwater flow in geological for- 
mations of mild heterogeneity (variance of natural log of con- 
ductivity O•nk = 0.1). When the degree of aquifer heterogeneity 
is large (•nk > 1) and the linear assumption becomes inade- 
quate, cokriging cannot provide a good estimate of the condi- 
tional mean conductivity field [Yeh et al., 1996]. In other words, 
it cannot take full advantage of the head information to obtain 
an optimal estimate of the hydraulic properties. 

To overcome this shortcoming, Yeh et al. [1995, 1996] and 
Zhang and Yeh [1997] developed an iterative geostatistical 
technique in which a linear estimator was used successively to 
incorporate the nonlinear relationship between hydraulic 
properties and pressure head. This method is referred to as a 
successive linear estimator (SLE). They demonstrated that 
with the same amount of information the SLE revealed a more 

detailed conductivity field than cokriging. Hughson and Yeh 
[1998, 2000] showed that the SLE is computationally efficient 
compared to the classical inverse method. They extended it to 
the inverse problem in three-dimensional, variably saturated, 
heterogeneous porous media, which had not been attempted 
before. In their study, pressure head and moisture content 
measurements at 42 locations (7 wells x 6 depths) in a three- 
dimensional porous medium were collected at three different 
times during an infiltration event. This secondary information 
was then used to estimate saturated hydraulic conductivity K s 
and a parameter of the Mualem-van Genuchten unsaturated 
hydraulic property model [van Genuchten, 1980] at 500 loca- 
tions in the porous medium. 

In this paper, on the basis of the SLE we develop a sequen- 
tial inverse technique for hydraulic tomography to process the 
large amount of data to characterize aquifer heterogeneity. 
While demonstrating the robustness of the inverse method, we 
also investigate the effect of monitoring intervals, pumping 
intervals, and the number of pumping locations on the final 
estimate of hydraulic conductivity. Guidelines for optimal de- 
sign of a hydraulic tomography test are subsequently estab- 
lished. To further verify our results, Monte Carlo inverse sim- 
ulations are performed, and the effects of measurement errors 
and uncertainties in statistical parameters required by the in- 
verse model are investigated. Finally, an example is used to 
illustrate the effectiveness and the robustness of this sequential 
approach for hydraulic tomography under three-dimensional, 
steady flow conditions. 

2. Methodology 
2.1. Equation of Flow in Three-Dimensional 
Saturated Media 

In this study we assume that the steady state flow field, 
created by the hydraulic tomography in three-dimensional, sat- 

urated, heterogeneous, porous media can be described by the 
following equation: 

V. [K(x)V&] + Q(x) = 0 (1) 

with boundary conditions 

qbIF1: &*, [g(x)V qb]. nIF=: q, (2) 

where 4> is total head (m), x is the spatial coordinate (x = { x •, 
x2, x3}, m, and x3 represents the vertical coordinate and is 
positive upward), Q is the pumping rate (m3/h m 3) at the 
selected interval during the tomography experiment, and K(x) 
is the saturated hydraulic conductivity field in m/h. In (2), 
prescribed total head on the Dirichlet boundary Fx is denoted 
by 4>* (m). Specified flux q, in m/h, is given on the Neumann 
boundary conditions I'2, and n is a unit vector normal to the 
union of F• and 1'2. 

2.2. Sequential Inverse Algorithm 

To deal with aquifer heterogeneity, the natural log of hy- 
draulic conductivity, In (K(x)), of an aquifer is treated as a 
stationary stochastic process with an unconditional mean, (In 
K) = F (the angle brackets denote the expected value), and 
the unconditional perturbation f. The corresponding steady 
hydraulic head distribution due to pumping in an interval in 
the hydraulic tomography is then presented by &(x) = H(x) + 
h (x), where H = (&) and h is the unconditional head pertur- 
bation. Suppose that we have used well log data and core 
samples to determine n• conductivity values f,*. = (ln K,*. - F), 
where i = 1, 2, ..., n• (we will refer to these data sets as 
primary information). Additionally, we have estimated the 
mean and correlation structure of the conductivity field. Also 
assume that during a hydraulic tomography experiment we 
have collected m sets of n h observed head values &•., where 
j = n• + 1, nt. + 2,..., n• + mn h during m sequential 
pumping tests. These head data sets are referred to as second- 
ary information. We then seek an inverse model that can pro- 
duce head and conductivity fields that preserve the observed 
head and conductivity values at sample locations and satisfy 
their underlying statistical properties (i.e., mean and covari- 
ance, etc.) and the governing flow equation. In the conditional 
probability concept, such a head or conductivity field is a con- 
ditional realization of 4> or In K field among many possible 
realizations of the ensemble. Consequently, a conditional con- 
ductivity field can be expressed as the sum of conditional mean 
conductivity and its conditional perturbation, K•.(x) = (Kc(x)) + 
k•.(x). Similarly, the conditional head field can be written as 
&•. = (&•.(x)) + h•.(x) (the subscript c denotes conditional). 
While many possible realizations of such conditional In K and 
4> fields exist, the conditional mean fields, i.e., (Kc(x)) and 
( &,. (x)), are unique. One way to derive these conditional mean 
fields is to solve the inverse problem in terms of the conditional 
mean flow equation. The conditional mean equation can be 
formulated by substituting the conditional stochastic variables 
into the governing groundwater flow equation (1) and taking 
the expected value. The conditional mean flow equation then 
takes the form: 

V. [{Kc(x))V{dpc(X))] + {V . [kc(x)Vhc(x)]) + Q(x) = 0. 

(3) 

We assume that the pumping rate Q (x) is deterministic. Notice 
that the true conditional mean K and 4> fields do not satisfy the 
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continuity equation (3) unless the second term in (3) is zero. 
The second term, (V. (kcVhc)), becomes zero only under two 
conditions: (1) All the conductivity values in the aquifer are 
specified (i.e., kc(x ) = 0) or (2) all the head values in the 
domain are known (measured) so that h•.(x) is zero every- 
where. In practice, these two conditions will never be met, and 
we are currently unaware of a means by which to correctly 
evaluate this term. Accordingly, we will assume that this term 
is proportional to the conditional mean gradient such that we 
can rewrite the mean equation as 

V. [{Keff(x)}V{rkc(X)}] + Q(x): 0. (4) 

This conditional mean equation has the same form as (1), but 
it is expressed in terms of the conditional effective conductivity 
and conditional mean hydraulic head field. The conditional 
effective conductivity (Kerr} is a parameter that combines the 
conditional mean conductivity (K c } and the ratio of the second 
term to the conditional mean gradient. 

Based on the concept of conditional mean equation, we 
essentially seek an inverse approach to derive the conditional 
effective hydraulic conductivity that will produce a conditional 
mean head field in (4). To do this, we used the SLE, which 
starts with the classical cokriging technique using observed f• 

* collected in one pumping test in the tomography to and h i 
construct a cokriged, mean-removed log conductivity map. 
That is, 

nf nf+nh 

fk(x0) = ]• h,0f,*(x,)+ ]• /•j0h•(xj), (5) 
t=l d=nf+ l 

where fk(xo) is the cokriged f value at location x o. Then, 
conductivity Kk(xo) becomes exp [F + f•(Xo) ]. Here, hio and 
/•o are the cokriging weights associated with x o, which can be 
evaluated as follows: 

nf nf+nh 

x,) + x): 
t=l y=nf+ 1 

•= 1,2,...,n•, 
(6) 

nf nf+nh 

x,) + x): 
i=1 y=nf+l 

v p = hi+ 1, hi+ 2, . . . , hi+ nh, 

where Rff, R ha , and Rfh are covariances of f and h and the 
cross covariance of f and h, respectively. The covariance R hh 
and the cross-covariance Ryh in (6) are derived from the first- 
order numerical approximation (similar to equations (9)-(11)) 
because of its flexibility for cases that involve bounded domains 
and nonstationary problems. 

As discussed in section 1, the information of hydraulic head 
may not be fully utilized because of the nonlinear relationship 
between f and h and the linear assumption embedded in 
cokriging. To circumvent this problem, a successive linear es- 
timator is used. That is, 

nf+nh 

•'r}r+l)(x0) : •/•r)(x0)q- E O)•;)[(/);(XJ ) -- (/)Jr)(xJ)]' (7) 
j =nf+ 1 

where %0 is the weighting coefficient for the estimate at loca- 
tion x o with respect to the head measurement at locationxi and 
r is the iteration index. •rc(ø) is an estimate of the conditional 

mean of In K, which is equal to the cokriged log conductivity 
field f•, + F at r = 0. The residual about the mean estimate 
at an iteration r is yr (i.e., yr = In K - •/c(r)). In (7), 4)J r) is the 
head at thejth location of the solution to (4) at iteration r, and 
&•. is the observed head at location j (i.e., &•. = Hs + h •.). The 
values of to are determined by solving the following system of 
equations: 

n f+ nh 

E '(r)ø(r){v Xj) q- O• -- 8(h•(X0, Xe) wjO C' hh k 'X ( , tt 

j =n/+ 1 

(8) 

v p = tlf + 1, n r + 2,..., tlf + tlh, 

where 8hh and e hy are the error covariance (or conditional 
covariance function) and error cross covariance (or conditional 
cross covariance), respectively, at each iteration, 0 is a stabi- 
lizing term, and •ii is an identity matrix. During the iteration 
the stabilizing term is added to the diagonal terms of the 
left-hand-side matrix of (8) to numerically condition the matrix 
and thus to assure a stable solution. A larger term can result in 
a slower convergence rate, and a smaller 0 value may lead to 
numerical instability. In our approach, this stabilizing term is 
determined dynamically as the product of a constant weighting 
factor and the maximum value of the diagonal terms of 8hh at 
each iteration. 

The solution to (8) requires knowledge of ehy and 8hh , 
which is approximated at each iteration. On the basis of the 
first-order analysis for a finite element groundwater flow 
model [Dettinger and Wilson, 1981], hydraulic head at the rth 
iteration can be written as a first-order Taylor series: 

49: •p(c r) + h © = G(• r) + y(r)) • G(•r)) + OGCr') I y(r), 0 InK •3r) 

(9) 

where G(•(c r)) represents the resulting head of the conditional 
mean equation (4) evaluated with parameters •r(cr). The first- 
order approximation of the residual h (r) can then be written as 

h (r) • 0 G (?•r)) I (r) = j(r)y (r) (1 O) O ln K •Jr) y ' 
where J can be evaluated using an adjoint state sensitivity 
method [Sykes et al., 1985; Sun and Yeh, 1992; Li and Yeh, 
1998] subject to boundary conditions. Using (11), we then 
derive the approximate covariance of h © and cross covari- 
ances between y(r) and h (r). 

(r) • j(r)83;)jT(r) ' 8hh (11) 
/•(r) (r) (r) hy--J •yy, 

where J is the sensitivity matrix of n h X N, superscript T 
stands for the transpose, and 8yy is the covariance of y, which 
is given by 

nf 

e•)(x0, xk) = Rgx0, x•) - • Xiogff(xi, Xk) 

nf+nh 

- 2 
j=nf+l 

(12) 

at iteration r = 0, where k = 1, 2, ..., N, and h and/• are 
cokriging coefficients. Equation (12) is the cokriging variance 
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if Xo = xk. For r --> 1 the covariances are evaluated according 
to 

nf+nh 

• (r+l)/v Xk) •-ø(r)[v Xk)- • '(r)ø(r){v Xk) (13) yy \•0, Oyy \•0, ß tuiO øyh 

i=nf+ 1 

These covariances are approximate conditional covariances. 
The accuracy of this approximation was investigated by Hanna 
and Yeh [1998] and will be discussed in section 5. 

After updating Yc(x) the mean flow equation (4) is solved 
again with the newly updated Yc(x) for a new head field, 
Then, the change of cr• (the variance of the estimated conduc- 
tivity field) and the change of the biggest head misfit among all 
the monitoring locations between two successive iterations are 
evaluated. If both changes are smaller than prescribed toler- 
ances, the iteration stops. If not, new ehy and ehh are evaluated 
using (11). Equation (8) is then solved to obtain a new set of 
weights, which are used in (7) with (qb•. - qb?) to obtain a new 
estimate of Yc(x). 

The above discussion describes the SLE for only one set of 
primary and secondary information during a hydraulic tomog- 
raphy experiment. This algorithm can also simultaneously in- 
clude all of the head data collected during all the pumping 
operations in the sequence. Nevertheless, the system of equa- 
tions in (6) and (8) can become extremely large and ill condi- 
tioned, and stable solutions to the equations can become dif- 
ficult to obtain [Hughson and Yeh, 2000]. 

To avoid this problem, the head data sets are used sequen- 
tially. Specifically, our method starts the iterative process with 
the available conductivity measurements and the head data set 
collected from one of the pumping operations. Once the esti- 
mated field converges to the given criteria, the newly estimated 
conductivity field •c is the effective conductivity conditioned 
on head data due to pumping at the first location, and the 
residual conductivity covariance is the corresponding condi- 
tional conductivity covariance. Subsequently, the conditional 
effective conductivity is used to evaluate the conditional mean 
head and sensitivity matrix, associated with pumping at the 
next location. Based on (11), the sensitivity matrix in conjunc- 
tion with the conditional conductivity covariance then yields 
the head covariance and cross covariance of head and conduc- 

tivity that reflect pumping at the next location, which are sub- 
sequently employed in (8) to derive the new weights [Li and 
Yeh, 1999]. With the conditional mean heads, the new weights, 
and the observed heads, (7) yields the conductivity estimate, 
representing the first estimate based on the information from 
the pumping at the new location. The iterative process is then 
employed to include the nonlinear relationship between head 
and conductivity. The same procedure is used for the next 
pumping location. In essence, our sequential approach uses the 
estimated hydraulic conductivity field and covariances, condi- 
tioned on previous sets of head measurements, as prior infor- 
mation for the next estimation based on a new set of pumping 
data. It continues until all the data sets are fully utilized. Such 
a sequential approach allows accumulation of high-density sec- 
ondary information obtained from hydraulic tomography, 
while maintaining the covariance matrix at a manageable size 
that can be solved with the least numerical difficulties. Vargas- 
Guzman and Yeh [1999] provided a theoretical proof to show 
that such a sequential approach is identical to the simultaneous 
approach for linear systems. 

3. Design Criteria for Hydraulic Tomography 
The design of the monitoring network, the pumping loca- 

tion, the number of pumping tests, and the pumping rate can 
influence the effectiveness of hydraulic tomography. In this 
section, the "optimum" design of hydraulic tomography is in- 
vestigated by applying our sequential geostatistical inverse 
model to a two-dimensional, vertical, hypothetical aquifer. The 
hydraulic tomography experiment considered consists of two 
fully screened wells, separated into many vertical intervals by 
packers, in a confined aquifer. Water is pumped from the 
aquifer at one of the vertical intervals, and after steady state 
flow is established, head responses of the aquifer are moni- 
tored at the other intervals. The same procedure is then re- 
peated at different pumping locations. 

3.1. Aquifer Description and Evaluation Criteria 

The hypothetical confined aquifer was assumed to be 20 m x 
20 m and was discretized into 400 elements of 1 m 2. Each 

element was assigned a conductivity value using a random field 
generator [Gutjahr, 1989]. This generated conductivity field 
had a geometric mean of 0.44 m/h and an exponential corre- 
lation structure with a variance of 0.63 for In K. The correla- 

tion structure was anisotropic: A horizontal correlation scale of 
12 m and a vertical correlation scale of 4 m are used. The left 

and right sides of the aquifer were constant head boundaries 
(with a prescribed hydraulic head of 80 m), while the top and 
the bottom sides were set to be no-flux boundaries. 

The performance of each network design was evaluated us- 
ing the average absolute error norm L1 and the mean-square 
error norm L2, which are defined as follows: 

L1 = - • f, - f, L2 = - • (f, - f,):, (14) 
t=l t=l 

where fi and fi represent the true and estimated perturbation 
of the log-transformed conductivity, respectively, i indicates 
the element number, and n is the total number of elements. 
The smaller the L1 and L2 values are, the better the estimate 
is. 

Conditional variance of estimated conductivity ess(Xo, Xo) 
(see equations (12) and (13)) is also used to evaluate the 
performance of the network design. The smaller the variance 
is, the more accurate the estimate. If the value of conductivity 
at a location is known exactly, the conditional variance at that 
location is zero. 

3.2. Optimal Monitoring Network 

One factor that must be considered during the design of a 
hydraulic tomography experiment is the separation distance of 
the two wells and the interval of packer placements within the 
well. To address this issue, the first well in the numerical 
experiments was fixed at one location in the aquifer (x = 13.5 
m, where x is the horizontal coordinate), and the second well 
was located at various distances to create different configura- 
tions. Subsequently, many monitoring network designs using 
different combinations of well separation distances and packer 
intervals were examined. For each monitoring network design 
a steady state flow was established by pumping at the fixed 
point (13.5 m, 13.5 m) and at a constant rate of 20 m3/h. The 
aquifer head values collected at each monitoring network were 
then used with our inverse model to estimate the hydraulic 
conductivity field. 
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Figure 1. (a) Contour map of norm L1 for different designs of hydraulic tomography. (b) Contour map of 
norm L2 for different designs of hydraulic tomography. Here, AX/Xx represents the ratio of the well spacing 
to the horizontal correlation scale and Az/Xz represents the ratio of the distance between packers to the 
vertical correlation scale. 

Effects of horizontal well spacing and vertical packer inter- 
vals are shown in Figures la and lb, where the contour maps 
of L1 and L2 for different values of Axl•x and Azl•z are 
plotted. The correlation scales in the x direction and the z 
direction are denoted by Xx and •, Ax is the separation 
distance between the two wells, and Az is the vertical distance 
between neighboring packers. The "optimal" horizontal and 
vertical intervals are defined as those that yield the minimum 
of L1 and L2 over the entire domain. According to Figures la 
and lb the optimal distance between the two wells (horizontal 
interval) is approximately half of the horizontal correlation 
scale. This distance cannot be too large or too small because 
the best estimate of conductivity values is near the vicinity of 
the wells where pressure changes are collected (see discussion 
in section 5). The optimal vertical distance between packers 
along the well (vertical interval) should be as small as possible 
(at least smaller than 0.5 times the vertical correlation scale). 
Also shown is that the separation distance between the two 
wells has more influence on the conductivity estimates than 
that between vertical monitoring points along the well. 
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Figure 2. Comparison of the goodness off estimate for var- 
ious pumping intervals, represented by the number of elements 
whose conditional variance is less than a given threshold value. 
Here, 3/is the ratio of the pumping interval Ap to the vertical 
correlation scale •. 

3.3. Optimal Pumping Interval 

The main idea of hydraulic tomography is to collect a large 
number of aquifer responses using the same monitoring net- 
work by changing the pumping locations along the wells. It is 
important to know how the choice of pumping interval (the 
distance between two adjacent pumping locations) influences 
the effectiveness of hydraulic tomography. 

To address this issue, numerical experiments were con- 
ducted. On the basis of the results of the previous analysis the 
horizontal separation distance of the two wells in the experi- 
ments was chosen to be 6 m, and the vertical monitoring 
interval was chosen to be 2 m. Consequently, two wells were set 
up at x - 7.5 m and x -- 13.5 m, and 10 monitoring intervals 
along each well were employed. The well at x = 7.5 m was 
chosen as the well where various pumping intervals would be 
considered. By changing the distance between two adjacent 
pumping locations from 2 m to 4 m, 6 m, 8 m, etc., the effect 
of the pumping interval was then evaluated. Figure 2 shows the 
number of elements of the aquifer with the conditional vari- 
ance less than some given values for different designs of the 
pumping interval. On the basis of Figure 2 the size of the 
pumping interval has little effect on the conditional variance. 
However, a slightly better estimate is obtained if the pumping 
interval is greater than 2 m, which is half of the vertical cor- 
relation scale. The same result is also obtained by evaluating 
L1 and L2 for different pumping intervals. Consequently, we 
conclude that the pumping interval should be greater than the 
half of the vertical correlation scale. 

3.4. Optimal Number of Pumping Locations 

From the analysis of the optimal pumping interval we found 
that once the pumping interval is greater than the half of the 
vertical correlation scale, a further increase of the interval does 
not significantly improve the f estimate. Nonetheless, for a 
given aquifer thickness the larger the pumping interval we 
select, the fewer the pumping locations we have, and the less 
information we can obtain from the tomography. Therefore it 
is imperative to determine the optimal number of pumping 
locations so that hydraulic tomography can provide sufficient 
secondary information. 

The influences of increasing numbers of pumping locations 
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Figure 3. (a) Comparison of the goodness of f estimate for various numbers of pumping locations, repre- 
sented by the number of elements whose conditional variance is less than a given threshold value. A, two 
pumping locations; B, three pumping locations; C, four pumping locations; and D, five pumping locations. (b) 
Norm L1 and L2 versus number of pumping locations. 

on the effectiveness of the tomography are shown in Figures 3a 
and 3b. Figure 3a plots the number of f estimates with condi- 
tional variance lower than the specified threshold value for 
different numbers of pumping locations. For a given threshold 
value of the conditional variance (for instance, 0.1), as the 
number of pumping locations increases from 2 to 4, the num- 
ber of f estimates with conditional variance smaller than 0.1 
increases from 47 to 147. As the number of pumping locations 
increases to 5, the number of good f estimates increases from 
147 to 164, showing that the rate of improvement decreases. 
The same trend is also shown in Figure 3b, where the values of 
L1 and L2 decrease significantly when the number of pumping 
locations increases from 2 to 4. Then, the decrease becomes 
moderate, and L1 and L2 gradually approach a constant value 
when five pumping locations are used. The results show that an 
increase in the number of pumping locations improves the final 
f estimate, but the improvement diminishes as more pumping 
locations are used, indicating that certain data sets generated 
from hydraulic tomography may provide redundant informa- 
tion. On the basis of this example the optimal number of 
pumping location is five (20 m/4 m; here 20 m is the aquifer 
depth, and 4 m is the vertical correlation scale). For a generic 
aquifer we may conclude that the optimal number of pumping 
location is the ratio of the aquifer depth to the vertical corre- 
lation scale. 

3.5. Effect of Pumping Rate 

Our numerical experiments show that the pumping rate does 
not affect the final estimate of conductivity. Under steady state 
flow conditions an increase in the pumping rate leads to an 
increase in the hydraulic gradient, which subsequently affects 
the sensitivity of head with respect to saturated conductivity. 
Such an increase in hydraulic gradients also results in an in- 
crease in head variance, but the cross correlation between the 
head and the conductivity remains the same. Consequently, the 
increase in the pumping rate does not affect the cokriging 
weights and does not influence the estimate [Li and Yeh, 1998]. 
In other words, different pumping rates will yield identical 
results. One must recognize, though, that in practice, pressure 

head data may be corrupted by noises. Thus an increase in 
pumping rate may increase the signal-to-noise ratio such that 
the inversion of hydraulic tomography data can yield better 
results. 

4. Uncertainty Analysis 
Our inverse method for the hydraulic tomography requires 

the knowledge of mean, variance, and correlation structure of 
the conductivity field, head data sets and the associated pump- 
ing rates, and some conductivity values if they are available. 
While head data and pumping rates can be collected during the 
tomography, several means can be employed to obtain the 
mean, variance, and correlation structure of the conductivity. 
For example, one can estimate them on the basis of core 
samples and well logs if they are available, or one can employ 
the structure identification approach developed by Kitanidis 
and Vomvoris [1983]. Geophysical survey is an alternative for 
determining correlation scales [Rea and Knight, 1998], and the 
traditional aquifer test analysis assuming aquifer homogeneity 
is a good way to estimate the mean conductivity. 

Nevertheless, these statistical parameters are estimates and 
not known precisely, and measurement errors in pressure 
heads are inevitable. Therefore the influence of the uncer- 

tainty in the statistical parameters and the effects of measure- 
ment errors on the estimate by our sequential inverse method 
are discussed next. 

4.1. Uncertainty in the Mean and Variance 
of Hydraulic Conductivity 

Without collecting a large number of hydraulic conductivity 
data sets the mean and variance estimates involve uncertainty. 
How the uncertainty affects the estimate of hydraulic conduc- 
tivity by our inverse method needs to be addressed. Several 
numerical experiments were conducted, and the results show 
that the uncertainty in the mean conductivity can cause the 
shift of the mean of our estimated conductivity field. The 
pattern of heterogeneity remains almost the same. On the 
other hand, the uncertainty associated with the variance of 
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change of horizontal correlation scale to the true correlation scale) and AXz/Xz (ratio of the change of vertical 
correlation scale to the true correlation scale). (b) Contour map of the change of L2 in percentage for different 
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conductivity has no influence on the final estimate. This is 
attributed to the fact that our inverse approach relies on the 
correlation and cross correlation, which do not involve the 
variance. Specifically, as the variance term appeared on both 
sides of the system of equations (6) and (8), it is factored out 
and canceled when solving the equations for weights. 

4.2. Uncertainty in Correlation Scales 

In order to study the effect of the uncertainty in correlation 
scales we used the previous hypothetical aquifer with the op- 
timal network design as our base case. Then, we conducted 
many test cases in which the correlation scales in horizontal 
and vertical directions were either overestimated or underes- 

timated up to 90%. For each test case, the percent changes in 
the values of the norm L1 and L2 from the base case were 

computed, and the changes for all the cases were then con- 
toured. Figures 4a and 4b show that our inverse solution is not 
very sensitive to the uncertainty in correlation scales unless the 
uncertainty is so large that it completely alters the direction of 
anisotropy (e.g., the upper left corners of Figures 4a and 4b). 
This can be attributed to the fact that the correlation structure 

I _ 
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Figure 5. Norm L1 and L2 versus the variance of measure- 
ment errors as a percentage of head variance. 

only provides a description of the average size of heterogene- 
ity. Once more point measurements (such as head information 
from tomography) become available, the impact of the infor- 
mation about the average size of heterogeneity fades out rap- 
idly. The same argument applies to the effect of uncertainty in 
the shape of the correlation structure (correlation functions). 

4.3. Measurement Errors in Pressure Heads 

To investigate impacts of these errors, we generated random 
head measurement errors with a zero mean and a variance that 

is equal to a specified fraction of the head variance for each 
monitoring location. The head variance was calculated based 
on the first-order analysis for the given pumping rate. The 
pressure head measurements at the monitoring locations were 
then perturbed with these errors and then were used in the 
inversion. Results of the inversion show that the estimate by 
our sequential inverse model is very sensitive to the errors: 
Small measurement errors can lead to erroneous estimates of 

the conductivity field. 
To extract useful information from the head data corrupted 

with errors, the error variances were added to the diagonal 
terms of the head covariance matrix, corresponding to the 
head measurement locations, when the weights for the SLE 
were sought. Because of the addition of the variance the esti- 
mated conductivity field becomes smooth, and head values at 
the sampling locations do not agree with the observed values. 

The effects of errors on our estimates using the above ap- 
proach are shown in Figure 5, where the L1 and L2 norms are 
plotted as a function of the error. As demonstrated in Figure 
5, the norm L1 and L2 grow rapidly when the error increases, 
which indicates that the estimate of the conductivity field is 
sensitive to the errors. However, when the variance of the error 
approaches more than 50% of the head variance, the rate of 
increase in L1 and L2 declines. This implies that the larger 
error the data set has, the less useful information the data set 
contributes. Therefore our inverse method results in a smooth 

conductivity field that is close to the unconditional mean value. 

4.4. Effect of Gravel Pack 

Wells are usually gravel-packed over the screen interval. 
Several numerical experiments were conducted to address the 
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Figure 6. (a) Contour map of the conditional variance of In K (Monte Carlo simulations). (b) Contour map 
of the conditional variance of In K (our sequential inverse approach). 

effects of omitting the gravel pack in the inverse modeling. In 
the experiments, gravel packs of different uniform conductivity 
value around the two wells were considered in the forward 

simulation to produce head measurements. The measured 
heads were then used in the inversion. Results of the inversion 

show that the influence of the gravel pack depends upon the 
contrast between the hydraulic conductivity of the backfilled 
gravel and the mean conductivity of the aquifer system. If the 
conductivity of the gravel pack is close to the geometric mean 
of the conductivity of the aquifer, then its effect is negligible. 
However, if the gravel pack has a conductivity value that is 
several orders of magnitude greater than the geometric mean 
of the aquifer, then its impact is significant. Since the gravel 
pack changes the head distribution, the effect can be mini- 
mized by treating it as the head measurement error. 

5. Monte Carlo Simulations 

As mentioned in section 2.2, the conditional covariance 

functions S hh and cross-covariance functions •hy are approxi- 
mations. One way to evaluate the accuracy of the approxima- 
tions is to compare them to those provided by the Monte Carlo 
simulations. Accordingly, we conducted Monte Carlo simula- 
tions using 30 realizations off fields. For each realization, five 
steady state pressure head data sets were produced on the basis 
of the optimum design of hydraulic tomography as discussed in 
section 3. In addition, two f measurements, one from each well, 
were included as primary information. Then, our proposed 
sequential inverse approach was employed. The difference be- 
tween our estimate and the true conductivity field for each 
realization at each element was then accumulated to determine 

the conditional variance at each element. 

The spatial distribution of the resulting conditional variance 
is shown in Figure 6a. Compared to the conditional variance of 
f calculated using the linear approximation (Figure 6b), the 
conditional variances obtained from Monte Carlo simulations 

are larger. Nonetheless, these two conditional variance maps 
show a similar pattern. That is, lower variances of f occur at 
locations along the wells where either pressure head or con- 
ductivity was measured. Such a result indicates that significant 
improvements, due to primary or secondary information, are 
limited to the vicinity of the measurement locations. 

6. Three-Dimensional Case Example 
To demonstrate the robustness of the sequential iterative 

approach for real-world problems, it was applied to hydraulic 
tomography in a three-dimensional hypothetical aquifer that 
had dimensions of 10 m x 5 m x 20 m. The aquifer was 
discretized into 1000 elements with dimensions of 1 m x 1 m 

x 1 m. Four sides of the aquifer were constant hydraulic head 
boundaries with a prescribed value of 80 m while the top and 
bottom of the aquifer were no-flow boundaries (Figure 7). We 
assumed that the heterogeneous hydraulic conductivity field 
had a horizontal correlation scale of 12 m and a vertical cor- 

relation scale of 4 m. We further assumed that the geometric 
mean of the hydraulic conductivity was 0.3452 m/h with a 
variance of In K equal to 0.625. With these assumed parame- 
ters the conductivity value for each element was generated 
using the spectral method [Gutjahr, 1989] (Plate la). On the 
basis of the optimum-sampling scheme discussed in section 3, 
a total of 20 pressure measurement locations were used. Two 

Figure 7. Schematic diagram of hydraulic tomography for a 
three-dimensional aquifer. Right triangles indicate monitoring 
locations, circles represent pumping locations (the numbers 
next to them indicate the order of pumping), and squares 
represent f measurement locations. 
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Plate 1. (a) The synthetic true f field, (b) estimated f field using data generated by pumping at location 1, 
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conductivity measurements were taken on each of the wells 
located in the synthetic flow domain (Figure 7). A three- 
dimensional steady state flow field created by pumping at a 
selected interval, with a discharge of 20 m3/h, was then simu- 
lated, and the head responses at other intervals were moni- 
tored. By sequentially pumping at five different vertical loca- 
tions (Figure 7), five pressure/discharge data sets were 
obtained. 

For each set of data the SLE was used to determine the 

conditional effective hydraulic conductivity field. The field ob- 
tained from this set of head measurements was used as prior 
information for the next estimation of the conductivity field, 
using the next set of pressure/discharge data. This procedure 
was performed sequentially. 

Plate lb shows the f estimates based on only the head data 
set created by pumping at location 1. Plate lc shows the f 
estimates when the head data set created by pumping at loca- 
tion 2 was included. Accordingly, Plate If shows the final f 
estimates when the fifth data set was included. As illustrated in 

Plates la-lf, the major features of the heterogeneity are cap- 
tured in the first sequence of the inversion. By incorporating 
the secondary information sequentially in the inversion more 
details of heterogeneity are revealed, and the estimate field 
increasingly resembles the true one. A scatterplot of the final 
estimated f versus the true f values along with the two statis- 
tical norms L1 and L2 is displayed in Figure 8. 

7. Conclusion 

The sequential inverse approach using data yielded from 
hydraulic tornography is a promising tool for characterizing 
aquifer heterogeneity. By using the secondary information se- 
quentially, the size of the covariance matrix in our inverse 
approach remains small, so that the matrix equations can be 
solved with ease. Thus inversion of the large amount of sec- 
ondary information collected during hydraulic tomography be- 
comes feasible. Compared to the results yielded from the 
Monte Carlo simulations, the residual variance produced from 
our sequential approach reflects the pattern of the conditional 
variance. 

Results of our numerical experiments show that the hydrau- 
lic tomography can be most effective if the horizontal separa- 
tion distance between wells is set to be half of the horizontal 

correlation scale. The vertical interval between two pressure 

monitoring locations should be no more than half of the ver- 
tical correlation scale. The optimal number of pumping loca- 
tions is equal to the ratio of the aquifer depth to the vertical 
correlation scale. The pumping rate has no effect on the esti- 
mate. 

Our analysis also leads to the conclusions that the uncer- 
tainty in the input variance for our inverse model has no 
influence on the estimates. Similarly, the uncertainty in corre- 
lation scales has no significant effect on the estimate unless the 
correlation scales are extremely underestimated or overesti- 
mated. Abundant secondary information (such as pressure 
head) in space can greatly reduce the effect caused by inaccu- 
rate knowledge of the correlation structure. If large measure- 
ment errors associated with pressure head exist, our inverse 
approach yields a smoother estimate than that obtained from 
the error-free data, reflecting the fact that less information is 
extracted from the measurements. Consequently, accurate 
measurements of the secondary information are needed to 
make hydraulic tomography successful. 

Finally, hydraulic tomography appears to be a promising 
field technique for providing abundant secondary information 
for characterizing aquifer heterogeneity. Using our sequential 
inverse model, hydraulic tomography can reveal more detailed 
aquifer heterogeneity than classical aquifer tests. 
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