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Abstract

Impacts of climate change can differ substantially across species’ geographic ranges, and

impacts on a given population can be difficult to predict accurately. A commonly used

approximation for the impacts of climate change on the population growth rate is the prod-

uct of local changes in each climate variable (which may differ among populations) and the

sensitivity (the derivative of the population growth rate with respect to that climate vari-

able), summed across climate variables. However, this approximation may not be accu-

rate for predicting changes in population growth rate across geographic ranges, because

the sensitivities to climate variables or the rate of climate change may differ among popula-

tions. In addition, while this approximation assumes a linear response of population growth

rate to climate, population growth rate is typically a nonlinear function of climate variables.

Here, we use climate-driven integral projection models combined with projections of future

climate to predict changes in population growth rate from 2008 to 2099 for an uncommon

alpine plant species, Douglasia alaskana, in a rapidly warming location, southcentral

Alaska USA. We dissect the causes of among-population variation in climate change

impacts, including magnitude of climate change in each population and nonlinearities in

population response to climate change. We show that much of the variation in climate

change impacts across D. alaskana’s range arises from nonlinearities in population

response to climate. Our results highlight the critical role of nonlinear responses to

climate change impacts, suggesting that current responses to increases in temperature or

changes in precipitation may not continue indefinitely under continued changes in climate.

Further, our results suggest the degree of nonlinearity in climate responses and the shape

of responses (e.g., convex or concave) can differ substantially across populations, such

that populations may differ dramatically in responses to future climate even when their cur-

rent responses are quite similar.
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Introduction

Effects of climate change on species’ geographic distributions are well-documented and wide-

spread [1, 2]. However, the impact of climate change on individual populations within a spe-

cies’ range can differ dramatically. In fact, climate-induced range shifts will only occur when

climate change effects differ across a species’ range. For example, when populations located

where conditions are cooler are able to persist or even grow under climate change, but popula-

tions located where conditions are warmer decline to extinction, a species’ range will shift to

track its thermal tolerances. Accurately predicting climate change impacts on extant popula-

tions and on shifts in species’ ranges requires understanding the factors that generate variation

in climate change impacts on population growth rate across a species’ range.

For terrestrial widespread species, all populations across the range are unlikely to experience

equivalent rates of change in temperature and precipitation. In particular, species with wide

latitudinal ranges are likely to experience faster rates of warming at their poleward limits than

at their equatorward limits [3]. However, these latitudinal patterns in rates of warming can be

complicated by topography, elevation, or buffering impacts of the ocean [4], as well as by

changes in precipitation that may counter or exacerbate the negative effects of temperature

increases. The variation in magnitude of climate change can contribute to variation in response

to climate change among populations; for example, a recent review showed that population

declines are more severe where average annual temperature changes are more substantial [5].

In addition to among-population differences in the magnitude of change in annual climate,

the seasonal pattern of change in each climate variable may differ among populations [6].

Moreover, populations of the same species may differ in their intrinsic sensitivity to the

same amount of change in a given climate variable [7–9]. One way to measure this climate sen-

sitivity is to compute the derivative of the population growth rate with respect to a climate vari-

able, evaluated at the current value of that variable. The difference in the rate of population

growth between the future and current climates could then be approximated by multiplying

the change in each climate variable by its climate sensitivity, and summing the products over

all climate variables, a procedure akin to a so-called “life table response experiment” or LTRE

[10, cf. 11]. Inherent in the LTRE approach is the assumption that the population growth rate

changes linearly in response to a change in a climate variable. Even if the linear assumption

were true, populations could differ in their sensitivities to climate variables (i.e., differ in the

slope of the relationship between population growth and climate), due to life history differ-

ences among populations [12, 13]. Differences in (linear) sensitivities could contribute to

among-population differences in climate change impacts. For example, low climate sensitivity

may buffer some populations from changes in a given climate variable, while high sensitivity

may amplify the impact of changes in the same climate variable in other populations.

However, it is well known that the population growth rate is a non-linear function of the

underlying vital rates [10, 14], and thus changes in climate variables may, if large enough,

drive a change in the population growth rate that is substantially different than the linear

approximation. In this case, the climate sensitivity may either underestimate (if population

growth is an accelerating function of the climate variable; Fig 1A) or overestimate (if popula-

tion growth is a decelerating function of the climate variable; Fig 1B) the true population

response to climate change (hereafter, “climate responsiveness”, measured as the change in the

population growth rate divided by the actual change in climate). Among-population differ-

ences in climate responsiveness will shape the responses to different magnitudes of climate

change across a species’ range. Thus, to gauge the consequences of climate change on popula-

tions across species’ geographic ranges accurately, we must account for the true pattern of pop-

ulation growth responses to climate in different populations.
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Here, we use an uncommon boreal plant species, Douglasia alaskana (Primulaceae), to test

how the pattern of response to changes in climate variables and different magnitudes of cli-

mate change combine to influence population growth rate across much of a species’ range.

Douglasia alaskana has a moderately-sized geographic range (southcentral Alaska), but has

high habitat specificity (alpine scree fields) and small population sizes, satisfying two of the

three components of rarity (habitat restriction and small local populations) described by ref.

[15]. Rates of climate change are likely to be large but quite variable among populations,

because the species occurs in one of the fastest warming regions in the world (the boreal zone),

but some populations are coastal and others inland. We construct climate-driven integral pro-

jection models [16] for five populations using observed climate responses coupled with realis-

tic projections of future climate. We then use these models to determine whether impacts of

climate change on population growth rate are driven by the magnitude of climate change in

each population v. climate responsiveness, and how nonlinearities in population responses to

multiple components of climate (e.g., summer v. winter temperatures) contribute to variation

in climate change effects across the range.

Methods

Douglasia alaskana is a perennial alpine plant with 1–3 rosettes and fruits presented on short

(<15 cm) peduncles. It occurs in alpine scree on ridgelines and mountaintops in southcentral

Alaska, USA (Fig 2). Populations are small, ranging from 4–300 individuals in all populations

we have found. The species is uncommon, with a very small fraction of seemingly suitable hab-

itat occupied. Seeds are dropped within 15 cm of the parent plant into unvegetated scree fields

(A. Louthan, pers. obs.). The species is partially semelparous, with most individuals (775 of

Fig 1. Non-linear effects of climate on population growth rate. Population growth rate is in general a non-linear function of climate (solid black

lines), either: A. accelerating; or B. decelerating. λC and λF are the current and future growth rates at the current and future values of a climate variable;

CC represents current and CF represents future climate. Blue lines show the slope of the population growth rate vs. climate evaluated at the current

climate (i.e., “climate sensitivity”). The slope of the red line (“climate responsiveness”) is the ratio of the actual change in population growth Δλ to the

actual change in climate ΔC (CF -CC). λL is the linear projection of the future population growth rate using the sensitivity, which underestimates λF

when population growth is an accelerating function of climate but overestimates λF when population growth is a decelerating function.

https://doi.org/10.1371/journal.pone.0247290.g001
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987 in our study) dying after reproducing. Median size of reproducing plans is 3.04 cm3, mini-

mum size of reproducing plants is 0.32.

To assess D. alaskana’s response to climate change, we conducted a demographic study in

populations spanning most of the range [17]. We then regressed vital rates against the climate

conditions observed during our study. We used these regressions to construct population-spe-

cific climate-driven integral projection models (IPMs). We used projections of future climate

from Global Climate Models (GCMs) to predict changes in population growth rate in each

population. Finally, we used a decomposition approach to quantify the relative importance of

different aspects of climate in eliciting climate change responses. We describe each step in

more detail below.

To quantify response of D. alaskana to climate, we conducted demographic censuses in

five populations (Fig 2) over one annual transition per population. In 2016, we marked and

mapped 56 and 196 individuals in 2 populations (C and S in Fig 2), measuring size (sum of

basal area x height of all rosettes; S1 Appendix) and number of fruits of each individual. We

returned in 2017 to score survival and measure size and number of fruits. In 2017–2018, we

Fig 2. Range of Douglasia alaskana and location of study. Map of southcentral Alaska in grey, with the approximate range of D. alaskana indicated

by the black polygon [17]. Populations used in this work are indicated by dots, and the labels of populations correspond to those of other figures. The

E2 and E1 populations are offset from one another to allow readability.

https://doi.org/10.1371/journal.pone.0247290.g002
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repeated this procedure on 3 additional populations, with 218, 309, and 383 individuals

marked and mapped in the three populations in 2017. All together, across the 5 populations

for the 2016–2018 period, we obtained data from 1162 individuals, including seedlings. We

estimated 5 size-dependent vital rates from these data: annual survival, mean size after one

year of growth, variance in size after one year of growth, probability of fruiting, and number of

fruits given fruiting. In four of the populations, we also estimated seedlings (in the second sur-

vey) per fruit (in the first survey) by counting all seedlings within a 15 cm radius in the second

survey around individuals that fruited in the first survey. Our C populations were located in

Chugach State Park, S in Kachemak Bay State Park, N in Denali National Park, and E1 and E2

in Wrangell-St. Elias National Park and Preserve, and we obtained permits from each of these

entities.

We used field-collected soil temperature data and climate projections from global climate

models (GCMs) to fit vital rate functions for the 2016–2018 period, as well as to construct

IPMs and project future population growth rate. In all analyses, climate data were summarized

by month, the timescale of the available future climate projections. Years were defined by the

August 1 to July 31 interval, determined by the timing of the demographic censuses. For exam-

ple, to estimate temperature over the 2017–2018 interval, we used data from August 1, 2017 to

July 31, 2018. To obtain soil temperature data, we buried 1 or 2 small temperature loggers

(iButtons; www.maximintegrated.com/en/products/ibutton/ibuttons/index.cfm) ~5 cm

underground in each population. We used the iButton data to obtain mean monthly soil tem-

perature over the 2016–2017 or 2017–2018 time period in each population. We obtained cur-

rent precipitation values from 5 GCMs for the 2015–2018 time period for each population

[18], hereafter, “SNAP” data. We used 2015–2018 soil temperature and precipitation data to fit

climate-vital rate relationships over the 2016–2018 period (S1 Appendix). We obtained future

precipitation and air temperature values from these same GCMs over the 2018–2099 time

period for each population, which we used to project population growth rate, after correcting

future temperature to reflect discrepancies between GCM air temperature projections and soil

temperature measured by iButtons (S1 Appendix; note that this correction assumes that the

difference between soil temperature and climate projections is consistent across years).

Because we were missing data for July soil temperature, we excluded July soil temperature

from our annual and seasonal soil temperature calculations and used air temperature from

SNAP data for hottest month temperature (which was often July; see S1 Appendix).

We synthesized the iButton temperature and SNAP data into ten climate variables describ-

ing 2015–2018 climate in each population: 1. average annual soil temperature; 2. average

snow-free season soil temperature; 3. average snow-covered season soil temperature; 4. coldest

month soil temperature; 5. warmest month air temperature; 6. total annual precipitation; 7.

snow-free season precipitation; 8. snow-covered season precipitation; 9. coldest month precip-

itation; and 10. warmest month precipitation. Climate variables 1–4 were estimated from iBut-

ton data (and thus do not include July); 5–10 were estimated from SNAP data. We describe

derivation of these climate variables in S1 Appendix.

We assessed the impact of these climate variables on D. alaskana vital rates using a model

selection framework [19] in R [20]. For mean log size after one year of growth, variance in log

size after one year of growth, probability of fruiting, and log number of fruits per size, we tested

all possible subsets of a global model with log size in previous time step, average annual tem-

perature, cumulative annual precipitation, and the interaction of average annual temperature

and cumulative annual precipitation as predictor variables using the dredge function in the R

package MuMIn [21], which allows comparison of multiple models using information theo-

retic approaches. We used AICc [22] to select a best-fit model. We repeated this model selec-

tion process for four other global models that included log size, temperature, and precipitation
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(and their interaction) during four time periods shorter than a year: 1) snow-covered season,

2) snow-free season, 3) coldest month, and 4) warmest month. We then selected, using AICc,

the single best fit model across these five time periods, and used it in all subsequent analyses.

Note that this approach does not allow for different windows of time to have effects on the

same vital rate (e.g., warmest and coldest month temperatures cannot both affect a given vital

rate), nor for quadratic temperature or precipitation effects reflecting an optimum, as we did

not have sufficient data to test for these effects. We modified the model selection approach for

probability of survival, which likely depends on both climate variables over the year of interest

and, given the plant’s semelparity, the probability of fruiting in the prior year (which itself

depends on the climate conditions in the prior year). Specifically, we tested the same 5 global

models as described above, but also allowed these models to include terms for coldest month

temperature and precipitation in the year prior, because coldest month conditions affected the

probability of fruiting (see Results). The global model for survival also included log size in the

prior year, the square of log size in the prior year, as well as interactions between log size and

coldest month temperature, as well as between log size and precipitation in the year prior (S1

Appendix). We used a generalized linear model with a binomial distribution for probability of

fruiting and survival, and a linear model for all other vital rates including variance in log size

(note that using log size improved normality of residuals). Our approach assumes that varia-

tion in climate results in different vital rates across populations, rather than other non-climate

factors that may also differ across populations, such as soil type. In addition, our approach

assumes that populations respond similarly to climate, and does not allow for local adaptation

resulting in different responses to climate.

We used the vital rate regressions to construct climate-driven population-specific integral

projection models (IPMs) for current (2008–2022) and future (2086–2100) conditions using

SNAP projections of climate over these time periods. While the demographic data span only

one annual transition for each site, we used population growth rate over a longer time period

(2008–2022) to represent current conditions, in an effort to guard against effects of unusual

climate conditions in the year of the measurements. We substituted SNAP temperature values

into the fitted regression equations to predict vital rates, correcting for population-specific dif-

ferences between soil (iButton) and air (SNAP) temperature estimates, as described in S1

Appendix. Note that analogous to the vital rate fitting procedure, we allowed the warmest and

coldest month to vary across populations, years, and GCMs. Because some vital rate predic-

tions were unrealistic, we limited our vital rate values to 30% more or less than the observed

maximum and minimum values for a size class in the discretized kernel (45% for binomial

vital rates’ observed values). The degree of limitation does not affect our results (S1 Appendix).

We calculated deterministic population growth rates for the current (2008–2022) and future

(2086–2100) time periods using the mean kernel over these time periods. We included param-

eter uncertainty in the predictions by performing a parametric bootstrap, sampling 500 times

from the multivariate Normal distribution of parameter estimates for each vital rate function

and recalculating current and future population growth rates for each set of parameter esti-

mates (note that this approach assumes that vital rates are independent). See S1 Appendix for

more details on the construction of the IPMs.

We used an LTRE and a decomposition approach to estimate the relative contributions of

each climate variable present in the vital rate functions to the change in growth rate for each

population (where change is defined as future minus current). First, we used a LTRE approach

to approximate the impact of each climate variable on population growth rate; specifically, we

calculated the numerical derivative of the population growth rate with respect to each climate

variable (using a perturbation approach; S1 Appendix) and multiplied it by the change in that

variable (mean future, 2086–2100, minus mean current, 2008–2022, value). This approach
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assumes a linear response of population growth rate to climate. We then assessed the climate

responsiveness as in Fig 1. Specifically, we regressed median annual population growth rate

(deterministic lambda from the annual kernels; median calculated across the bootstrapped

samples of regression coefficients) against splines of all annual climate variable present in the

vital rate functions using a generalized additive model (GAM) in the mgcv package [23–25].

We used AIC to ensure that each population’s GAM was a better fit than an analogous linear

model.

To account for the nonlinearity of climate responsiveness, we used a decomposition

approach to estimate the relative contribution of each climate variable to the change in popula-

tion growth rate for each population. We first calculated Δλ, the difference between population

growth rate in 2086–2100 (future) and 2088–2022 (current), measured as deterministic λ of

the mean kernel. We then calculated Δλc, the contribution of climate variable c to Δλ, by com-

paring population growth rate of the current sequence to a ‘future’ population growth rate

obtained by replacing one climate variable c with the 2086–2100 sequence, maintaining all

other climate variables at the 2088–2022 sequence. Δλc isolates the impact of each climate vari-

able in generating the difference between the future and current population growth rate, incor-

porating both climate responsiveness and differences in the magnitude of climate change

across populations or climate variables. We repeated this decomposition for each population

and each climate variable present in the vital rate functions. We found a high correlation (R =
0.85) between the sum of Δλc values across climate variables and Δλ, suggesting that the contri-

butions are additive and the decomposition approach is reasonable.

We assessed the relative contribution of magnitude of climate change v. climate responsive-

ness in generating variation in climate change effects across populations using a multiple

regression. For each climate variable, we ran a multiple regression using median Δλc as a

response variable (where median is calculated across 500 bootstrap samples of regression coef-

ficients). Predictor variables were the amount of change in a climate variable (Δc in Fig 1,

mean future, 2086–2100, minus mean current, 2008–2022, climate conditions) and the climate

responsiveness value for each climate variable (where climate responsiveness, Δλ/ Δc in Fig 1,

is calculated using the GAM predictions, holding all non-focal climate variables at their

mean). We used the sums of squares from an ANOVA analysis to partition the total variance

of each Δλc into components due to degree of change in a climate variable, climate responsive-

ness, and their interaction. Note these results should be interpreted with caution, as the sample

size is very low (5 replicate populations per multiple regression).

In the analyses in the main text, we use the average climate projections (across GCMs). Pro-

jections of population growth rates for individual GCMs are similar and shown in the S1

Appendix. All demographic data are archived on Figshare (10.6084/m9.figshare.13911755).

Results

We found effects of one or more climate variables on every vital rate that we tested for them,

with the exception of variance in size after one year of growth (Table 1). Larger plants were

more likely to fruit, but high temperature and high precipitation in the coldest month of the

current year reduced the probability of fruiting (Table 1, Fig 3C). Larger size reduced the num-

ber of fruits per unit size given fruiting, and high temperature in the coldest month of the

current year further reduced the number of fruits per unit size (Table 1, Fig 3D). Higher pre-

cipitation in the coldest month of the current year decreased survival (Fig 3A). Given that

fruiting tended to be fatal, and that larger plants were more likely to fruit, the linear effect of

size on survival was negative; a negative quadratic term suggests that survival may have been

even lower for very large plants (Table 1). In addition, higher precipitation during the coldest
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month of the prior year increased current-year survival (Table 1, Fig 3A), which again can be

explained by semelparity: higher precipitation in the prior year’s coldest month reduced the

probability of fruiting in that year, which then increased survival in the current year. Counter-

intuitively, while high temperature during the previous year’s coldest month also reduced the

probability of fruiting in the previous year (which should increase survival), this temperature

variable actually decreased survival in the current year (Table 1, Fig 3A). In addition, survival

exhibited positive interactions between size and both temperature and precipitation in the

coldest month of the prior year (Table 1). Finally, mean size next year was smaller when annual

precipitation was higher, but greater when annual temperature was higher (Table 1, Fig 3B).

Climate is predicted to be warmer and wetter in all populations on average, but the magni-

tude of temperature increases and the timing of changes in precipitation differ among popula-

tions (Fig 4). Mean annual temperature increase is projected to be higher in all populations by

Fig 3. Effects of climate on vital rates. Vital rate relationships with climate for probability of survival (A), mean size after one year of growth (B),

probability of fruiting (C), and number of fruits given fruiting (D) for a plant of median size (or for C, median size of fruiting plant). For A, we show

how the impact of precipitation in the coldest month changes with coldest month conditions in the year prior. For prior year conditions, we use the

observed temperature and precipitation for the coldest, wettest, and warmest/ driest populations (coldest: -9˚ C, 56.0 mm, wettest: -7˚ C, 158.2 mm,

warmest/ driest: 1˚ C, 54.4 mm). For B and C, we show how the impact of temperature varies with the associated precipitation during the same interval,

using values of precipitation from the driest or wettest populations: B driest: 662.8 mm, B wettest: 1431 mm, C driest: 43.2 mm, C wettest: 180.8 mm.

See Table 1 for all parameter estimates, and S1 Fig in S1 Appendix for raw data.

https://doi.org/10.1371/journal.pone.0247290.g003
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the end of the current century, ranging from 4.3 to 5.13˚ C. Increases in coldest month temper-

ature are even more dramatic, ranging from 5.1 to 6.8˚ C. The N population will likely experi-

ence the most substantial increases in both annual and coldest month temperature over the

2018–2099 period, while the S, E1, and E2 populations will only experience moderate

increases. While annual precipitation is predicted to increase in all populations, the magnitude

and timing of precipitation changes will differ across populations (Fig 4). For example, annual

precipitation will increase the least in the C population, though changes in coldest month pre-

cipitation are still high (Fig 4). In spite of these differences in climate change magnitude across

populations and in climate effects on different vital rates, we project significant increases in

population growth rate in a future climate at all populations but the N population, with partic-

ularly large increases at the E1 and E2 populations (Fig 5).

Sensitivities to climate variables differed dramatically in magnitude and sign across popula-

tions. Sensitivity to average annual temperature was highest at the C, N, and S populations,

particularly at the C and S populations (Fig 6). By contrast, sensitivity to average annual tem-

perature was very low (or even negative) at the E1 and E2 populations (Fig 6). Sensitivities to

other climate variables were low, but also differed across populations in magnitude and sign

(Fig 6).

We found nonlinearity in the responses of population growth rate to climate, which often

resulted in a poor performance of LTRE approximations. Our comparisons of GAM and linear

models showed support for nonlinearity in climate responses. Note that results should be

interpreted with caution, as including coldest month conditions in GAMs did not satisfy some

Fig 4. Rate of climate change. Change (mean future, 2086–2100, minus mean current, 2008–2022) in precipitation (A) and temperature (B) conditions

for five populations for each climate driver present in the vital rate functions. Populations are arranged along the x-axis by increasing current average

annual temperature; for example, the E1 population has the coldest average annual temperature over the current period, and the S population has the

warmest average annual temperature over this period. See S1 Table in S1 Appendix for raw data.

https://doi.org/10.1371/journal.pone.0247290.g004
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assumptions, but GAMs with only annual conditions satisfied all assumptions and showed

similar results (S1 Appendix). Some responses of population growth rate to climate were

roughly linear. For example, responses to average annual temperature at all populations

besides the N population (Fig 7A) were roughly linear. However, many other relationships

were highly nonlinear, showing unimodal responses (effect of coldest month temperature at

the S and E2 populations, Fig 7C), decelerating responses (average annual temperature at the

N population, Fig 7A), or more complex relationships (annual precipitation at the C popula-

tion, Fig 7B). For most climate variables and populations, the LTRE approximation was inac-

curate (Fig 7), resulting in a relatively weak correlation between the LTRE-predicted change in

population growth rate and the GAM-predicted change in population growth rate (Pearson’s

R = 0.62, n = 2500, S4 Fig in S1 Appendix). The direction and magnitude of bias of LTRE

approximations differed dramatically across populations and across climate variables (Fig 7).

Differences in climate conditions across populations resulted in variation in the response of

population growth rate to particular climate conditions, and the resultant variation in climate

responsiveness modulated the impact of each aspect of climate on population growth rate.

Across populations’ climate conditions, the relationship between population growth rate and a

particular climate variable differed in magnitude and in degree of nonlinearity. For example,

population growth rate increases linearly with changes in average annual temperature at most

populations, but the N population’s response is decelerating (Fig 7A), resulting in only a

Fig 5. Change in population growth rate due to climate change. Impact of climate change on population growth rate for all populations,

expressed as the difference between future (2086–2100) and current (2008–2022) population growth rates. Points indicate the mean

difference and error bars indicate 95% confidence intervals of differences (calculated across 500 bootstrapped samples from the

distributions of model coefficients). As in other figures, populations are arranged by increasing current average annual temperature. See S2

Fig in S1 Appendix for population growth rates, and S3 Fig in S1 Appendix for GCM-specific results.

https://doi.org/10.1371/journal.pone.0247290.g005
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moderate effect of average annual temperature on population growth rate (Fig 8). Supporting

these findings, the direction and degree of bias of LTRE approximations differed across popu-

lations’ climate conditions (S4 Fig in S1 Appendix), depending on whether the relationship

between climate and population growth rate was linear, concave, or convex (Fig 7). For exam-

ple, in Fig 7B, the S and C populations’ response to annual precipitation is highly nonlinear;

these populations’ LTRE approximation predicted higher future population growth rate than

is likely to occur. By contrast, the E1 and E2 populations’ response is quite linear; these popula-

tions’ LTRE approximation predicted lower future population growth rate than is likely to

occur.

Average annual temperature was the most important driver of changes in population

growth rate, with weaker effects of other climate variables. Average annual temperature

strongly increased population growth rate at all populations, though the effect size, Δλc, varied

(Fig 8). In fact, increases in average annual temperature are predicted to increase population

growth rate so substantially that they are sufficient to counter the negative effects of changes in

all other climate variables at all populations besides the N population. Coldest month tempera-

ture was the most important climate variable that reduced population growth rate, though

again Δλc varied across populations (Fig 8).

Among-population variation in climate responsiveness to average annual temperature is

predicted to drive differences in climate change effects across populations. The multiple

regression indicated that for average annual temperatures, climate responsiveness, rather than

change in climate conditions, will be the key determinant of change in population growth rate

(Table 2). For example, at the N population, climate responsiveness to average annual temper-

atures is low (Fig 7A). Low climate responsiveness leads to a small Δλc at the N population (Fig

8), resulting in weaker overall effects of climate change at this population (Δλ is low, Fig 5).

Fig 6. Sensitivity to climate variables at current (2008–2022) climate conditions. Sensitivities were calculated using a perturbation approach using

kernels from the current time period. We show the mean sensitivity across 500 bootstrap replicates; bars indicate the 95% confidence intervals on

sensitivities. As in other figures, populations are arranged by increasing current average annual temperature.

https://doi.org/10.1371/journal.pone.0247290.g006
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This effect occurs even though the N population is projected to experience the greatest increase

in average annual temperature (Fig 4B). For other climate variables, both the degree of change

in climate conditions and climate responsiveness are key determinants of changes in popula-

tion growth rate (Table 2).

Fig 7. Nonlinear responses of D. alaskana to climate. Response of annual population growth rates (λ) to changes in aspects of temperature and

precipitation that affect vital rates. Unfilled points represent medians (across bootstrapped regression coefficients) of the annual population growth

rates vs. the current and future GCM climate values for each year from 2008 to 2099; curves represent predictions of population-specific GAMs with

non-focal climate variables held at their mean values. Arrows on the top of the figures represent the magnitude of climate change at each population;

start of the arrow is at the mean climate condition for the current period (2008–2022) and end of the arrow is at the mean climate condition for the

future period (2086–2100). Filled points represent population growth rates predicted by the GAM at current and future mean climates, with an asterisk

indicating future population growth rate predicted by an LTRE approach.

https://doi.org/10.1371/journal.pone.0247290.g007
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Discussion

Temperature and precipitation have a mix of positive and negative effects on D. alaskana vital

rates, consistent with a variety of other studies. Our findings of positive temperature effects on

survival and growth, but negative temperature effects on reproduction, are similar to results

found in other alpine plants. Doak and Morris [26] found that higher temperature decreases

reproduction in the wide-ranging alpine plants Silene acaulis and Polygonum viviparum, but

increases growth rates, perhaps due to longer and warmer growing seasons. In D. alaskana, we

also see a lagged negative effect of coldest month temperature on survival, which is surprising

given that coldest month temperature reduces the probability of fruiting, which should in turn

increase survival given the plant’s semelparity. Precipitation also impacts vital rates, with a mix

of positive and negative effects. Positive effects of precipitation could reflect increased water

availability or protection from damaging frosts due to high snowpack [27–29]. Alternatively, a

Fig 8. Δλc, the effect of each climate variable on the change in population growth rate. We show Δλc, calculated for each climate variable changing

current (2008–2022) climate variables to future (2084–2099) climate variables, one climate variable at a time. Bars indicate the mean Δλc and error bars

indicate the 95% confidence intervals of Δλcs, calculated across bootstrapped parameter estimates. Horizontal lines indicate the mean Δλ, future-

current population growth rate, and dotted lines indicate the 95% confidence intervals of Δλ, calculated across bootstrapped parameter estimates. In

both panels, populations are arranged in the same order as in prior figures (increasing current average annual temperature).

https://doi.org/10.1371/journal.pone.0247290.g008
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larger snowpack could lead to a shorter growing season, resulting in negative effects of precipi-

tation. In D. alaskana, we also see a strong lagged positive effect of coldest month precipitation

on survival, which likely arises because precipitation in the coldest month reduces the proba-

bility of fruiting, which then increases survival the subsequent year. Consistent with our find-

ings, other work also shows a mix of positive and negative effects of precipitation on different

vital rates [30]. Surprisingly, we see no evidence for precipitation x temperature interactions;

other studies have suggested that such interactions might be critical in alpine species. For

example, increasing temperature could accelerate melt-out and negate any negative impact of

precipitation [31].

In spite of the mix of positive and negative effects of temperature and precipitation, popula-

tion growth rate across the species’ range is projected to be higher under future climate condi-

tions (higher temperature and precipitation). These positive effects appear largely mediated by

increases in average annual temperature (Fig 8), likely resulting from the positive effect of

average annual temperature on mean growth rate (Table 1). Consistent with our findings, a

recent review showed that many high- and mid-latitude populations across many taxa have

responded positively to increased temperature under current climate conditions. In particular,

plants responded more positively to temperature increases than any other taxa studied (inver-

tebrates, fishes, amphibians, birds, or mammals; [32]). Our results further suggest that future

climate change will reduce D. alaskana’s extinction risk, an unexpected result considering that

uncommon species such as D. alaskana are more likely to go extinct than common species

[33]. However, both current and future population growth rates were below unity for most

populations (other than future population growth rate at the S and C populations, S2 Fig in S1

Appendix), suggesting that even with increases in population growth rate with climate change,

most D. alaskana populations, besides those in the most favorable conditions, will decline to

extinction. While current population growth rates less than one are somewhat counterintui-

tive, it is possible that suboptimal historical conditions (climate or otherwise) have resulted in

current low population growth rates. This prediction is consistent with the likely extirpation of

at least one population from previously occupied habitat (A. Louthan, pers. obs.). Alterna-

tively, lower-than usual growth rates during the years of our study, seed bank dynamics, or

unaccounted for immigration could result in low estimates of current population growth rates.

Table 2. Role of climate responsiveness v. rate of climate change.

Climate variable Climate

responsiveness

Change in climate

conditions

Change in climate conditions x

climate responsiveness

Residual

Average annual

temp. (˚C)

0.84933 0.08188 0.06631 0.00248

Annual precip.

(mm)

0.20552 0.39518 0.0799 0.3194

Coldest month

temp. (˚C)

0.60387 0.03245 0.28828 0.0754

Coldest month

precip. (mm)

0.12438 0.50025 0.22179 0.15358

Proportion of variance in the contribution of climate variables to change in population growth rate (Δλc) attributable

to climate responsiveness v. the change in climate conditions (Δc, mean future, 2086–2100, minus mean current,

2008–2022, conditions), and the interaction between the two. Climate responsiveness is obtained by regressing

median annual growth rates (median is across 500 bootstrapped sets of parameter estimates) on annual climate

conditions using a GAM (Fig 7), and dividing Δλ by Δc, as in Fig 1. For all multiple regressions, the response

variable, Δλc (contributions of climate variables to Δλ) is the median across 500 bootstrapped sets of parameter

estimates. Bold indicates which effect has the highest proportion of variance for each climate variable.

https://doi.org/10.1371/journal.pone.0247290.t002
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Variation in the impacts of climate change on population growth rate is driven primarily by

differences in populations’ climate responsiveness, suggesting that future studies should recog-

nize that climate responsiveness, and thus the degree to which current response to climate pre-

dicts future response, could vary across populations. Differences in climate responsiveness

across populations are not surprising; we know that interspecific variation in life history char-

acteristics can modulate the impact of a given amount of climate change. For example, species

that are shorter lived [34] or have shorter generation times [35] tend to be more impacted

by changes in environmental conditions, such as climate change. We also know that at the

intraspecific level, life history characteristics can vary substantially across populations [12],

meaning that populations could vary in their responsiveness to changes in environmental con-

ditions. For example, perhaps populations with lower survival (and thus shorter generation

times) have higher climate responsiveness. Among-population variation in climate itself can

generate variation in life history that then modulates the impact of climate. For example, rela-

tive to other populations, the N population is less sensitive to the positive effects of average

annual temperature on population growth rate (Fig 8), likely because changes in other climate

variables will modulate its sensitivity to mean annual temperature. Namely, large increases

in coldest month temperature at this population (Fig 4B) will lead to reduced probability of

reproduction of those larger plants (Table 1), tempering the positive effects of higher average

annual temperature on reproduction (mediated through larger sizes due to higher mean

growth rates; Table 1).

Nonlinear responses of population growth rate to climate are very common, and the

degree of nonlinearity, as well as the shape of the nonlinear relationship, varies dramatically

across populations. The sensitivities to climate variables at current climate conditions are

very different, in both magnitude and sign, than the climate responsiveness, which incorpo-

rates the entire range of temperature and precipitation conditions. For example, at the E1

population, the (linear) sensitivity to average annual temperature at current climate condi-

tions is negative (Fig 6), which suggests that increases in average annual temperature should

decrease population growth rate. However, when we incorporate nonlinearities in the

response to changes in temperature, we see a net positive effect of increases in average annual

temperature on population growth rate (Fig 8). The direction and magnitude of bias in

LTRE predictions varies across populations (due to variation in their climate conditions; Fig

7A), with similar effects for other climate variables (Fig 7B–7D). While the possibility of non-

linearities in responses of population growth rate to climate and other drivers are often

acknowledged in population-level analyses, we know little about their prevalence [36, 37],

let alone the degree to which the presence or degree of nonlinearity in responses differs

across populations. Particularly concerning is the growing body of evidence that nonlinear

population responses to climate are common and widespread [26, 38], and that it is difficult

to quantify how large increases in temperature will affect population dynamics due to the

dearth of data on population responses at historically unprecedented temperatures [39].

While past work has shown that a linear approximation is generally reasonable when calcu-

lating elasticities to vital rates [40], these analyses ignore covariances among vital rates,

which are present in D. alaskana, as well as any other species in which one climate variable

affects multiple vital rates (as likely occurs for most species). Thus, our results suggest that

population-specific nonlinearities (effected in our study by variation in climate conditions)

may be critical in mediating overall population response to changes in climate or other driv-

ers for a variety of species.

Our metrics of climate responsiveness and of sensitivity to climate variables assume that

variation in climate response arises only from climate differences across populations, but we

know that natural selection could also lead to variation in response across populations. Only a
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few studies quantify how sensitivity varies across populations across a species’ range (e.g., ref.

[41]), and fewer still quantify whether this variation arises from local adaptation or simply var-

iation in driver values across a species’ range. Past work suggests that populations should be

relatively insensitive to climate drivers that were historically highly variable [42]. We see some

support for this pattern, with the N population (which has likely experienced the highest his-

torical climate variability, due to its inland, high-latitude location) less responsive to some cli-

mate drivers than other populations (the S and C populations, which are coastal, were likely

historically buffered from climate variability due to proximity to the ocean). Similarly, in

Chinook salmon, juvenile survival in different populations depends on completely different

climate drivers, which results in divergent responses to climate changes [43]. Whether differ-

ential responses of salmon juvenile survival to climate arise from local adaptation or not is

unclear. Regardless, the salmon study shows that variation in climate change effects on popula-

tion growth rate can arise from differences among populations in the slope of the vital rate

function v. climate relationships, rather than only by variation in climate response caused by

among-population variation in mean climate conditions, as occurs in D. alaskana. In addition

to local adaptation, other among-site differences in non-climate drivers, such as soil or eleva-

tion, are confounded with climate differences in our study, because we only have one year of

demographic data per site.

Spatial variation in some climate variables’ impacts was due to variation in climate change

magnitude across space (Table 2). Other studies have found that rates of warming vary across

space, with high-latitude, inland, or wind-protected locations experiencing higher rates of

warming [4]. Additionally, rates of population declines in birds and mammals are greater in

locations where temperature has increased more [5]. Our work also suggests that differential

rates of warming across seasons could have implications for climate effects on population

growth rate. We found that increases in average annual temperature increase future popula-

tion growth rate, but increases in coldest month temperature actually decrease population

growth rate (Fig 8). Consistent with this finding, other studies have shown that seasonality of

climate changes, relative to the life history of the organism, matters; for example, egg viability

of two butterfly species decreased with extreme high temperature, but high mean temperature

had positive effects on larval growth rates [44]. Similar effects have been observed for pheno-

logical responses [45] and for crop yield [46].

Our work has important implications for predicting effects of climate change on popula-

tions across a species’ range. Effects of climate change on D. alaskana are universally positive

and nonlinear, mediated primarily by spatial variation in climate responsiveness. Variation in

the rate of climate change also contributes to differential impacts of climate change across pop-

ulations. Thus, our work suggests that current responses to climate may not continue indefi-

nitely under continued changes in climate, but that populations may differ dramatically in

their responses to future climate, even if their current responses to climate are very similar to

one another. This is important because often conservationists only have data on current

responses to climate, rather than future response to climate. All of these factors are likely to

generate idiosyncratic responses to climate across populations. Thus, our work may provide a

framework for understanding why many species do not show predictable shifts in their geo-

graphic range with climate change [2, 47, 48].
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