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[1] The use of interwell partitioning tracers to quantify the amount of nonaqueous phase
liquid (NAPL) in porous media has been demonstrated in several laboratory and field
tests. The primary emphasis of work to date has been on the use of first temporal
moments of tracer breakthrough curve (BTC) data to estimate the average NAPL
saturation. Here we extend the data analysis to the use of tracer BTC second and third
temporal moments to estimate the statistical parameters characterizing the NAPL
spatial distribution. In particular, we examine the fraction f of the streamlines that contain
NAPL and the mean and standard deviation of the distribution of streamline trajectory-
average NAPL saturations. Two models are presented based on discretizing tracer swept
volumes into contaminated and uncontaminated zones. The models are applied to data
from three-dimensional numerical simulations, two-dimensional flow laboratory
experiments, and field tests at two sites (Hill Air Force Base, Utah, and a dry cleaner
in Jacksonville, Florida). For all cases considered here, good agreement was found
between expected (measured) and estimated values of f, the fraction of the tracer swept
zone that contained NAPL. The effects of nonlinear and nonequilibrium partitioning as
well as correlations between NAPL saturation and saturated hydraulic conductivity are
also considered. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1831 Hydrology:

Groundwater quality; 1832 Hydrology: Groundwater transport; KEYWORDS: groundwater hydrology,

groundwater quality, groundwater transport
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1. Introduction

[2] The design of effective subsurface remediation strat-
egies requires knowledge of both the amount and spatial
distribution of the contaminants present. Interwell partition-
ing tracers have been used at both the laboratory and field
scales to detect and quantify nonaqueous phase liquid
(NAPL) contaminants in the subsurface [Jin et al., 1995;
Nelson and Brusseau, 1996; Annable et al., 1998; Jawitz et
al., 1998c, 2000; Falta et al., 1999; Cain et al., 2000;
Meinardus et al., 2002]. The partitioning tracer methodol-
ogy involves the selection of tracers that partition into the
NAPL phase with predictable or measurable relationships.
A suite of these tracers is injected into a steady-state flow
field at one or more injection wells and recovered down
gradient at extraction wells. Tracer partitioning is mani-
fested as delayed or retarded transport observed in tracer
breakthrough curves (BTCs). The degree of separation can
be related to the quantity of NAPL present in the zone swept
by the tracers.

[3] To date, the interpretation of partitioning tracer data
has been restricted to analyses of BTC first temporal
moments for the characterization of domain-average NAPL
saturation, enabling estimation of the total NAPL volume
within the tracer swept volume. The determination of the
spatial distribution of the NAPL mass within the flow
domain requires either intensive soil core sampling [e.g.,
Rao et al., 1997; Jawitz et al., 1998c, 2000; Meinardus et
al., 2002] or partitioning tracer characterization at multiple
sampling locations [Sillan et al., 1998; Jawitz et al., 1999].
James et al. [1997] and Zhang and Graham [2001]
presented inverse modeling stochastic algorithms for
estimating NAPL spatial distributions using partitioning
tracer data collected from a network of multilevel samplers.
[4] Here, we describe the use of partitioning tracers and

the method of temporal moments [e.g., Valocchi, 1985] to
characterize the spatial distribution of NAPLs in porous
media using only one sampling location. Our approach
is based on the Lagrangian conceptualization of flow
fields as collections of noninteracting streamtubes, wherein
solute transport can be described in terms of trajectories
along streamlines. Along each streamline, nonreactive
tracers provide integrative measures of the hydrodynamic
heterogeneity of the media between tracer injection
and monitoring points, and reactive (partitioning) tracers
provide similar integrative information about the combined
influences of hydrogeology and reactive surfaces (NAPL)
[e.g., Cvetkovic et al., 1998]. This Lagrangian approach is
combined with a binary model, wherein it is assumed that
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some fraction of the streamlines transecting a domain are
uncontaminated and the NAPL saturation in the remaining
fraction f can be represented either as a homogeneous
value, or as a distribution of saturations. Soerens et al.
[1998] also considered homogeneous and distributed
binary models of NAPL distribution in relation to aqueous
dissolution. The goal of the binary models described here
is to express partitioning tracer moments in terms of
nonpartitioning tracer moments and parameters that describe
the NAPL spatial distribution, which can be estimated from
the measured tracer moments.

[5] Four spatially descriptive definitions of NAPL satu-
ration (generally defined as the ratio of the volume of NAPL
contaminants to the pore volume) are distinguished: (1)
Local or point saturation, SN, (2) Average saturation for the
entire spatial domain, �SN, (3) Average saturation for the
contaminated fraction of the domain �SN,c = �SN/f, and (4)
Trajectory-average saturation along a streamline, ŜN. The
binary models of NAPL distribution, and these definitions
of NAPL spatial structure are illustrated in Figure 1.
[6] First temporal moment analysis of partitioning tracer

data enables estimation of �SN [e.g., Jin et al., 1995]. The

Figure 1. Comparison of NAPL distribution models: (a) homogeneous, (b) homogeneous binary model
where a fraction of the horizontal trajectories are contaminated with uniform trajectory-average
saturations, and (c) distributed binary model where a fraction of the trajectories exhibit a distribution of
trajectory-average saturations. Note that the domain-average NAPL saturation is equal for all three cases
shown.
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homogeneous binary model extends partitioning tracer
analysis to second moments [Jawitz et al., 1998b], enabling
estimation of both �SN and the fraction f of the streamlines in
the domain that are contaminated. For heterogeneously
distributed NAPLs, the streamlines that transect the con-
taminated zone exhibit a distribution of trajectory-average
NAPL saturations, ŜN. The distributed binary model con-
siders partitioning tracer first, second, and third temporal
moments, enabling estimation of f and the mean and
variance of the trajectory-average NAPL saturation distri-
bution. The applicability of both the homogeneous and
distributed binary models is explored here using numerical
simulations, laboratory experiments, and field data. Labo-
ratory and field results presented here are from extraction
wells representing flux-averages over the screened interval;
however, the methodology is equally applicable to tracer
BTC data collected at smaller scales, such as multilevel
samplers [e.g., James et al., 1997; Sillan et al., 1998].
[7] The binary approach is advantageous because con-

taminant source zones may include relatively large portions
that do not contain NAPL. Establishing the fraction of tracer
trajectories that are uncontaminated may be significant for
the design of remediation systems such as in situ flushing
[e.g., Jawitz et al., 1998c, 2000; Falta et al., 1999], where
the remediation and tracer test hydraulic configurations (i.e.,
well pattern and flow rates) are similar. The delivery of
remedial fluids to uncontaminated zones is both inefficient
and expensive. Ascertaining the fraction of the swept zone
that is uncontaminated may lead to the implementation of
more efficient and less expensive remediation designs. For
example, if it is known that a large fraction of the remedial
fluids to be flushed through a contaminant source zone will
not contact any NAPL, alternate well configurations or
remedial technologies may be investigated.
[8] The presence of NAPL contaminants in the subsur-

face may affect the porous media hydraulic properties,
altering the flow field. For example, flow bypassing may
occur around regions of high NAPL saturations [Soerens et
al., 1998]. Consequently, the present approach is useful
primarily for ‘low’ residual saturations where the media
hydraulic properties are not significantly affected by the
NAPL. In the laboratory and field experiments discussed
here, the domain average NAPL saturations were consid-
ered low enough (the maximum value here is 0.063) that the
effects of NAPL on the flow field were considered minor.
Note that several other field studies have documented
similarly low residual NAPL saturations [e.g., Annable et
al., 1998; Falta et al., 1999; Cain et al., 2000; Meinardus et
al., 2002]. The effects of flowing or mobile NAPLs were
also not considered.

2. Theory

2.1. Transfer Function Approach

[9] Jury [1982] proposed modeling solute BTCs as
lognormal travel time distributions as an alternative to the
ADE. An advantage of this strategy is that parameters
affecting solute travel time can be estimated without the
constraint of describing the causative transport processes.
The lognormal distribution is appropriate for many proper-
ties related to geologic media because the distribution
originates from processes that involve multiplicative effects

of independent random events, such as a sequence of
particle breakages resulting in a distribution of particle sizes
[Aitchison and Brown, 1957]. The logarithm of a product of
random processes results in a sum of logarithms, which is
normally distributed according to the central limit theorem.
A lognormal random variable X is one for which Y = ln X is
normally distributed with mean mln X and standard deviation
slnX. If solute arrival time, t, is considered as a random
variable, then the lognormal probability density function
(PDF), p(t), is described by the following equation:

p tð Þ ¼ 1ffiffiffiffiffiffi
2p

p
sln t t

exp � ln tð Þ � mln tð Þ2

2s2ln t

 !
;

t > 0; sln t > 0

ð1Þ

2.2. Method of Moments

[10] The method of moments is an effective technique for
determining model parameters from measured data. The Nth
temporal moment, MN, of a distribution, p(t), is defined:

MN ¼
Z1
0

tNp tð Þdt ð2Þ

The absolute moments of measured BTCs are calculated by
replacing p(t) in (2) with measured solute concentration
values, C(t). Normalized moments, mN, are Nth absolute
moments scaled to the zeroth moment. Model parameters
are determined by equating measured moments, determined
through numerical integration of measured data [e.g., Haas,
1996], with derived moment expressions, generating a
system of N equations that can be solved for N model
parameters.
[11] The following expression for the Nth normalized

moment of a lognormal travel time distribution can be
derived by substituting (1) into (2) and integrating [e.g.,
Jury and Roth, 1990]:

mN ¼ exp Nmln t þ N2s2ln t=2
� �

ð3Þ

2.3. Partitioning Tracers

[12] Tracer retardation, R, is determined from the ratio of
the mean arrival times (i.e., first normalized temporal
moments) of the partitioning tracer, m1

p, and the nonparti-
tioning tracer, m1

np, both corrected for the solute pulse
injection duration, t0:

R ¼
m

p
1 �

t0

2

m
np
1 � t0

2

ð4Þ

Following Jin et al. [1995], we relate retardation for the
entire domain, RT, to the average NAPL saturation in the
system, �SN, and the NAPL-water partitioning coefficient,
KN:

RT ¼ 1þ KN
�SN

1� �SN
ð5Þ
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This relation requires the assumption that tracer partitioning
follows a linear, reversible isotherm.

2.4. NAPL Spatial Distribution Models

2.4.1. Excess Spreading of Tracer BTCs
[13] A flux-averaged BTC measured from the transport of

an instantaneously injected nonpartitioning tracer through a
porous medium will exhibit some degree of spreading,
characterized by the second moment, that is representative
of the degree of heterogeneity of the media. The transport of
a partitioning tracer through the same medium will be
retarded according to (5) and the measured BTC will exhibit
a greater degree of spreading than that of the nonpartition-
ing tracer. For example, if transport is adequately described
by the advection-dispersion equation (ADE) and partition-
ing is both instantaneous and linear, the partitioning tracer
second moment, m2

p
, can be expressed as m2

np multiplied by
R2 [e.g., Valocchi, 1985]. Any BTC spreading beyond that
expected based on m2

np and R can be considered as ‘excess’
spreading.
[14] A nonhomogeneous NAPL distribution can contrib-

ute to partitioning tracer BTC excess spreading that is
manifested in the higher moments (i.e., N > 1). The goal
of this work is to use nonpartitioning and partitioning
tracer moments to infer properties of the spatial distribu-
tion of NAPL contaminants based on the concept of
excess spreading. However, nonuniformly distributed
NAPL is not the only cause of partitioning tracer BTC
excess spreading. Confounding effects include nonequilib-
rium partitioning [Valocchi, 1985], nonlinear partitioning
[Wise et al., 1999], and a correlation between SN and
hydraulic conductivity, K [e.g., Valocchi, 1989]. The sig-
nificance of correlations between SN and K was evaluated
in this study with numerical simulations, while nonlinear
and nonequilibrium effects were evaluated in laboratory
experiments.
2.4.2. Binary Model Framework and Assumptions
[15] Consider a multidimensional flow field that is

resolved into a collection of noninteracting streamtubes. A
fraction f of the total number of streamtubes in the domain is
assumed to be contaminated, while the remaining fraction
(1-f ) of the streamtubes is uncontaminated. At low residual
saturations, nonpartitioning tracer transport is assumed to
be identical in the contaminated and uncontaminated
regions, assuming. Thus, mN,c

np
= mN,uc

np
= mN,T

np
, where the

subscripts, c, uc, and T refer to contributions from the
contaminated, uncontaminated, and total domain fractions,
respectively. Because of this equivalence, these subscripts
will be dropped when referring to the nonpartitioning tracer
moments hereafter.
[16] Partitioning tracer retardation in the contaminated

fraction of the domain, Rc, is related to �SN,c as in (5):

Rc ¼ 1þ KN
�SN ;c

1� �SN ;c
ð6Þ

Combination of (5) and (6) results in the following
relation between total retardation and contaminated zone
retardation:

RT ¼ 1� fð Þ þ fRc ð7Þ

where

f ¼ f � �SN
1� �SN

ð8Þ

Application of the definition of R from (4) (i.e., the ratio of
partitioning and nonpartitioning tracer first moments) to RT

and Rc, and substitution into (7) results in

m
p
1;T ¼ 1� fð Þmnp

1 þ fmp
1;c ð9Þ

Thus, the partitioning tracer normalized moment from the
total domain can be obtained through the superposition of
moments from the uncontaminated and contaminated
fractions. Note that (9) reflects that for a partitioning tracer
that does not react with the media, transport through the
uncontaminated region is identical to that of the nonparti-
tioning tracer, such that mN,uc

p
= mN

np
. The results from (9)

may be generalized for the Nth moment as:

m
p
N ;T ¼ 1� fð Þmnp

N þ fmp
N ;c ð10Þ

Note from (8) that as �SN approaches zero, f ! f and the
superposition relationship (10) becomes a fractional sum of
the contributions from the uncontaminated and contami-
nated portions of the domain.
[17] Jawitz [1999] developed binary model equations,

after those of Soerens et al. [1998], that account for the
effects of NAPL on media properties and flow bypassing;
however, it was found that because of the relatively low
NAPL saturations considered here, these effects were minor
(consideration of bypassing in the laboratory experiments
discussed below resulted in corrections to f of approximately
2–3%). Therefore, these effects will not be considered
further here.
2.4.3. Homogeneous Binary Model
[18] In this model, a fraction f of the streamtubes within

the domain is assumed to be homogeneously contaminated
with NAPL at saturation �SN,c = �SN/f (Figure 1b). In many real
systems, NAPLs are non-homogeneously distributed within
a streamtube, where individual trajectories may intercept a
number of contaminated and uncontaminated zones between
injection and extraction points. Here, we consider only the
trajectory-average NAPL saturation, which is independent of
the location of the NAPL along the trajectory. It is assumed
that each streamtube is independent and NAPL-water parti-
tioning is instantaneous and linear. Four parameters are then
required to describe reactive solute transport through this
binary system: Two that describe the nonpartitioning solute
behavior (mlnt,np and slnt,np for the lognormal distribution
model), and two that describe the NAPL saturation distribu-
tion ( f and �SN,c). These four parameters may be estimated
using four moment equations (two each for the nonpartition-
ing and partitioning tracers).
[19] By considering the tracer arrival times in (4) as

random variables and combining with (6), partitioning
tracer arrival time can be expressed as a function of non-
partitioning tracer arrival time and �SN,c:

tp;c ¼ tnp þ KN
�Sctnp � KN

�Sc
t0

2
ð11Þ

where �Sc = �SN,c/(1 � �SN,c) and �Sc, KN, and t0 are constants
for each streamtube. The Nth partitioning tracer moment for
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the contaminated portion of the domain can then be deter-
mined by taking the expected value of both sides of (11):

m
p
N ;c ¼ E tNp;c

h i
¼ E tnp þ KN

�SN tnp � KN
�Sc

t0

2

	 
N� �
ð12Þ

where the expected value notation, E[XN], is equivalent to
the Nth moment of X. Expansion of (12) and incorporation
into (10) results in the homogeneous binary model equa-
tions for total-domain partitioning tracer moments, which
are expressed in terms of nonpartitioning tracer moments
and NAPL spatial distribution parameters:

m
p
1;T ¼ 1� fð Þmnp

1 þ f m
np
1 þ KN

�Scm
np
1 � KN

�Sc
t0

2

h i
ð13Þ

m
p
2;T ¼ 1� fð Þmnp

2 þ f
�	

1þ 2KNScþK2
NS

2

c



m

np
2

�
	
KNSct0 þ K2

NS
2

c t0



m

np
1 þ K2

NS
2

c

t20
4

�
ð14Þ

2.4.4. Distributed Binary Model
[20] It is perhaps more likely that NAPL saturations

within a contaminated zone will be distributed heteroge-
neously, rather than in a homogeneous fashion (Figure 1c).
Here, the lognormal PDF is used to describe both the travel
time and trajectory-average NAPL content distributions.
Using this approach, five parameters are now required to
describe reactive solute transport through the system: Two
that describe the nonpartitioning solute behavior (mlnt,np and
slnt,np), one that quantifies the contaminated fraction of the
domain ( f ), and two that describe the NAPL saturation
distribution within the contaminated fraction (mln Ŝ and sln Ŝ).
These five unknown parameters may be estimated using
five moment equations (two for the nonpartitioning tracer
and three for the partitioning tracer).
[21] Following (5) and (6), Ri = 1 + KNŜN/(1 � ŜN) is the

retardation in a streamtube containing NAPL for the dis-
tributed model. Thus, analogous to the homogeneous binary
model, the contaminated zone partitioning tracer moments
can be expressed as:

m
p
N ;c ¼ E tNp;c

h i
¼ E tnp þ KN Ŝtnp � KN Ŝ

t0

2

	 
N� �
ð15Þ

where now both tnp and Ŝ = ŜN/(1 � ŜN) are lognormal
random variables that may be correlated. The trajectory-
average ‘‘NAPL content’’ Ŝ [e.g., James et al., 1997],
rather than the NAPL saturation ŜN, was assumed to be
lognormally distributed because the range for both NAPL
content and lognormal distributions is [0,1] while the
range for NAPL saturation is [0,1].
[22] Solution of (15) requires consideration of the product

of correlated lognormal distributions. If Z = XaYb is a
product of lognormal random variables, then ln Z = aln
X + bln Y is a sum of normal random variables, which is
itself normal. Thus, Z is lognormal with

mln Z ¼ amlnX þ bmln Y ; s
2
ln Z ¼ a2s2lnX þ b2s2ln Y þ 2abrX ;YslnXsln Y

ð16Þ

where rX,Y is the correlation coefficient between X and Y.
The correlation coefficient quantifies the degree of inter-
relation between two random variables and is defined:

rX ;Y ¼
E X � mX

1

� �
Y � mY

1

� �
 �
slnXsln Y

ð17Þ

Substituting (16) into (3) and simplifying results in:

E XaYb

 �

¼ mX
a m

Y
b exp abrX ;YslnXsln Y

� �
ð18Þ

Expansion of (15), using (18), and incorporation into (10)
results in the distributed binary model equations for total-
domain partitioning tracer moments, which are expressed in
terms of nonpartitioning tracer moments and NAPL spatial
distribution parameters:

m
p
1;T ¼ 1� fð Þmnp

1 þ f m
np
1 þ KNm

Ŝ
1m

np
1 g

h
�mŜ

1KN

t0

2

i
ð19Þ

m
p
2;T ¼ 1� fð Þmnp

2 þ f 1þ 2KMm
Ŝ
1g

2
	h

þK2
Nm

Ŝ
2g

4


m

np
2

� KNm
Ŝ
1 t0g

	
þK2

Nm
Ŝ
2 t0g

2


m

np
1 þ K2

Nm
Ŝ
2

t20
4

�
ð20Þ

m
p
3;T ¼ 1� fð Þmnp

3

þ f

"
1þ 3KNm

Ŝ
1g

3
	

þ 3K2
Nm

Ŝ
2g

6 þ K3
Nm

Ŝ
3g

9


m

np
3

�
 
KNm

Ŝ
1

t0

2
g2 þ K2

Nm
Ŝ
2 t0g

4 þ K3
Nm

Ŝ
3

t0

2
þ K2

Nm
Ŝ
2

t20
2
g2

þ K3
Nm

Ŝ
3

t20
4
g3

!
3m

np
1 � K3

Nm
Ŝ
3

t30
8

#
ð21Þ

The correlation terms in (19)–(21) have been simplified
with the notation g = exp(rt;Ŝslnt,npsln Ŝ).
[23] Note that the above moment equations account for

tracer rectangular pulse inputs of duration t0; however, the
equations for both models are significantly simplified for
Dirac inputs (i.e., t0!0). The laboratory and field results
presented below were determined in consideration of actual
t0 values (the simulations were conducted with instanta-
neous tracer release). For these data, ignoring t0 and using
the simpler forms of the equations for both models resulted
in errors of approximately 1% and 10% in the estimated f
and �SN values, respectively.

2.5. Parameter Estimation

[24] The binary models described above express tracer
moments in terms of parameters that describe the NAPL
spatial distribution. Thus, moments of measured tracer
BTCs may be used to estimate these parameters. First,
solution of (3) for N = {1,2} allows the lognormal PDF
parameters describing nonpartitioning tracer transport to be
written in terms of the first two normalized temporal
moments from a measured BTC as follows:

mln t;np ¼ 2 ln m
np
1

� �
�
ln m

np
2

� �
2

ð22Þ

s2ln t;np ¼ ln m
np
2

� �
� 2 ln m

np
1

� �
ð23Þ
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When the homogeneous binary model is assumed, the
NAPL distribution parameters f and �SN,c are then deter-
mined from the tracer BTC moments by algebraic solution
of (13) and (14). The application of (13) and (14) to other
solute transport models such as the ADE is also valid,
subject to the constraints of the given assumptions.
[25] For the distributed binary model, the parameters

describing the NAPL saturation distribution ( f, mln Ŝ , sln Ŝ
and rt;Ŝ) are determined by solving (19)–(21) using the
measured nonpartitioning and partitioning tracer moments.
For uncorrelated cases (rt;Ŝ = 0), (19)–(21) may be solved
algebraically; however, for correlated cases, algebraic solu-
tion of these equations is intractable. For the correlated
cases considered here, model parameters were estimated by
variable metric (Newton) regression where the root mean
squared deviation (RMSD) between the measured partition-
ing tracer moments and those calculated from (19)–(21)
was minimized:

RMSD ¼ 1

p

Xp
i¼1

mm
i � mc

i

mm
i

� �2
" #1

2

ð24Þ

where the superscripts m and c represent measured and
computed moments, respectively, and p is the number of
moments used.

2.6. Generating Model PDFs

[26] It is usually desirable to generate model BTCs for
comparison with measured data following model parameter
estimation from moment equations. The focus here is on
representing nonpartitioning and partitioning tracer BTCs
using lognormal distributions. For simple nonpartitioning
tracer BTCs, model fits can be generated directly from (1)
using the lognormal PDF parameters mlnt,np and slnt,np
determined from (22) and (23).
[27] Under the binary NAPL distribution framework,

partitioning tracer BTCs can be generated through the
superposition of solutions of (1) for the uncontaminated

and contaminated zones, as with the partitioning tracer
moments in (10):

p tp;T
� �

¼ 1� fð Þp tp;uc
� �

þ fp tp;c
� �

ð25Þ

Again, transport through the uncontaminated region is
assumed to be identical to that of the nonpartitioning tracer,
such that tp,uc = tnp. In the contaminated zone, (11) and (15)
reveal tp,c to be equivalent to a sum of lognormal
distributions for both the homogeneous and distributed
binary models, where the constant terms in (11) are
considered zero-variance distributions. The sum of N
lognormal random variables has been demonstrated to be
very closely approximated by a lognormal distribution,
even for high-variance cases [Schwartz and Yeh, 1982;
Abu-Dayya and Beaulieu, 1994]. Therefore, by subtracting
the estimated fractional contribution of the uncontaminated
zone from the total BTC moments in (10), the resulting
moments, representative of tracer travel through only the
contaminated zone, can be used with (22) and (23) to
determine the lognormal PDF parameters mlnt,pc and slnt,pc
for tp,c. This approach was employed to generate model
BTCs using (25) for the numerical simulations and
laboratory experiments described below. Methods for
generating model BTCs for the field experiments are
discussed in a separate section below.

3. Numerical Simulations

[28] The utility of the binary model moment equations
derived above was evaluated using three-dimensional nu-
merical simulations of tracer transport in saturated porous
media. The motivations for these simulations included: (1)
Validating the binary model equations derived above, (2)
Assessing the suitability of the excess spreading approach
for estimating NAPL spatial distribution parameters from
tracer temporal moments, (3) Evaluating the effects of
correlations between SN and K on tracer transport, and

Table 1. Actual and Estimated Ŝ Distribution Model Parameters From Three-Dimensional Particle Tracking
Simulationsa

mln Ŝ sln Ŝ rt;Ŝ RMSD (	10�5)

slnK
2 = 0.2, b = 0

Actual �2.95 ± 3.00E-4 0.123 ± 0.002 0.016 ± 0.021
Model fit �2.96 ± 0.009 0.153 ± 0.038 �0.002 ± 0.003 6.65 ± 2.10

slnK
2 = 0.2, b > 0

Actual �2.94 ± 6.10E-4 0.120 ± 0.003 �0.350 ± 0.010
Model fit �2.93 ± 0.011 0.117 ± 0.006 �0.361 ± 0.019 5.08 ± 3.52

slnK
2 = 0.2, b < 0

Actual �2.97 ± 5.5E-4 0.128 ± 0.002 0.369 ± 0.023
Model fit �2.97 ± 0.002 0.143 ± 0.022 0.350 ± 0.004 3.96 ± 1.37
Fit; rt;Ŝ ¼ 0:0 �2.98 ± 0.008 0.225 ± 0.030 �0.001 ± 0.002 6.24 ± 2.16

slnK
2 = 1.0, b = 0

Actual �3.02 ± 0.008 0.321 ± 0.008 �0.009 ± 0.006
Model fit �2.98 ± 0.030 0.229 ± 0.068 0.0 ± 0.0 53.0 ± 32.5

slnK
2 = 1.0, b > 0

Actual �2.93 ± 0.010 0.301 ± 0.006 �0.347 ± 0.006
Model fit �2.93 ± 0.012 0.287 ± 0.018 �0.413 ± 0.044 14.6 ± 6.02

slnK
2 = 1.0, b < 0

Actual �3.10 ± 0.005 0.342 ± 0.009 0.317 ± 0.005
Model fit �3.10 ± 0.010 0.308 ± 0.034 0.341 ± 0.008 209 ± 349

aValues reported are mean and standard deviation for simulations conducted with different contaminated fractions, f = {0.1, 0.4, 0.6,
1.0} and {0.25, 0.5, 0.75, 1.0} for slnK

2 = 0.2 and 1.0, respectively. Model fits were determined using the binary distributed model
(19)– (21). Reported RMSD values are between partitioning tracer actual and model-fit first three normalized temporal moments.

SBH 7 - 6 JAWITZ ET AL.: ESTIMATING NAPL SPATIAL VARIABILITY USING TRACERS



how these correlations affect our ability to estimate NAPL
spatial distribution parameters, and (4) Examining relation-
ships between local parameters, such as K and SN, and
trajectory-integrated parameters, such as tracer travel time t
and trajectory-average NAPL content, Ŝ. The effects of
nonlinear and nonequilibrium partitioning, effects that in
addition to correlations between SN and K, may confound
the excess spreading approach, were evaluated in laboratory
experiments, described in a separate section below. Deter-
mining relationships between local and trajectory-integrated
parameters is important because field methods such as soil
coring provide local or point information about K and SN,
while tracer tests provide solute trajectory integrative
information.
[29] A suite of simulations was conducted using a range

of hydraulic conductivity field variances and NAPL spatial
distributions. Solute transport was modeled using a particle
tracking approach described below. Breakthrough curves
were generated from particle arrival times and temporal
moments were determined by numerical integration. The
NAPL spatial distribution parameters f, mln Ŝ , sln Ŝ and rt;Ŝ
were estimated using the measured moments and the
distributed binary model equations, (19)–(21). The homo-
geneous and distributed models were compared using the
laboratory experiments.

3.1. Particle Tracking Approach

[30] Tracer transport through heterogeneous domains was
modeled using the particle tracking methodology described
by Demmy [1999]. A summary of the simulation methods
follows; additional details are given by Demmy [1999] and
Demmy et al. [1999]. A turning bands algorithm [Tompson
et al., 1989] was used to generate a flow domain of 82 	
40 	 40 grid blocks with an exponentially correlated,
lognormally distributed, isotropic saturated hydraulic con-
ductivity field with mlnK = 0.0 and a correlation length, l, of
8 grid blocks. A series of simulations was conducted with
log conductivity field variances slnK

2 = {0.05, 0.2, 1.0, 2.0,
4.0, 6.0}. The slnK

2 = {0.2, 1.0} simulations were used to
evaluate the distributed binary model, while the entire
suite of simulations was used to explore relationships
between the statistics of local parameters (slnK

2 and slnS
2 )

and trajectory-integrated parameters (slnt,np
2 and sln Ŝ

2 ), and
to investigate the effects of correlations between SN and K
on these relationships.
[31] Constant head boundaries were specified at x = 0 and

x = 82 with an average gradient of 0.01 and a homogeneous
mobile water content of 0.2. A mixed finite element scheme
was used to generate a system of coupled pressure-velocity
equations that were solved to produce a velocity field for
input into a particle tracking scheme. A Monte Carlo
approach, similar to that suggested by Cvetkovic et al.
[1998], was employed wherein n = 5000 realizations of the
flow field were generated and a single particle was injected
into each at x = 1, y = 20, z = 20. Particle arrival times and
travel lengths were recorded at the x = 81 control plane,
resulting in a nominal travel distance of 10 l. This multi-
realization approach results in a collection of n statistically
independent trajectories with a uniform resident injection
boundary condition [Demmy et al., 1999]. However, flux-
weighted injection is more representative of interwell tracer
tests, and the measured arrival times were thus weighted by
their initial velocities, v0 (see Kreft and Zuber [1978] and

Demmy et al. [1999] for discussions on the significance of
uniform versus flux boundary conditions).
[32] Solute BTCs are analogous to PDFs, but because of

the discrete nature of the particle tracking method, particle
arrival time distributions were represented as cumulative
distribution functions (CDFs), P(t). The arrival times were
ranked in ascending order of their numerical values and,
because each time was weighted by its instantaneous
velocity at the time of injection, flux-weighted CDFs were
generated from the ordered nonpartitioning and partitioning
particle arrival times as follows:

P tið Þ ¼

Xi
j¼1

v0; j

Xn
j¼1

v0; j

ð26Þ

where P(ti) represents the probability that the arrival time of
particle i is less than or equal to t.

3.2. Correlation Between SN and K

[33] Many investigators have studied the effects of a
correlation between hydraulic conductivity, or media per-
meability, and sorption coefficient, Kd, on solute transport
through the use of numerical or analytical models [Valocchi,
1989; Cvetkovic and Shapiro, 1990; Robin et al., 1991;
Bellin et al., 1993; Tompson, 1993]. All of these studies
have shown that a negative correlation between Kd and K
leads to enhanced spreading relative to the uncorrelated
case, while a positive correlation leads to less spreading. For
the negatively correlated case, reactive tracers traveling
along low velocity (i.e., low permeability) streamlines will
experience high Kd values and be more retarded, leading to
longer travel times and more-elongated BTCs. For the
positively correlated case, reactive solutes traveling along
high velocity streamlines will be more highly retarded,
allowing the solutes traveling along the low velocity, and
low retardation, streamlines to catch up, resulting in more-
compressed BTCs.
[34] Similar effects would be expected for correlations

between SN and K; however, little experimental evidence
exists to support a general model for a correlation between
these parameters. Also, because media properties and model
parameters are often inferred from tracer arrival time
distributions, as will be done here, any correlation between
the local parameters SN and K may be of secondary
importance to correlations between the trajectory-integrated
parameters ŜN and tnp. In many scenarios, the solute arrival
time for a given streamline can be considered to be
inversely proportional to K. Correlations between SN and K
can then be transformed to correlations between SN and t.
However, for three-dimensional heterogeneous fields, solute
path lengths are not likely to be equal for each streamline.
Also, for domains that are more complex than simple linear
flow systems, solute travel time may be affected by factors
other than hydraulic conductivity. In doublet well patterns,
for example, a wide distribution of streamline lengths is
produced by the flow system geometry even in homo-
geneous media, and solute travel times and K are not
directly proportional. Therefore, any correlations that may
exist between SN and K may be only weakly manifested in
measured BTCs.
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[35] However, for comparison with the extensive literature
on the correlation between Kd and K, correlations between
SN and K were included in the numerical simulations
presented below and the effect of these correlations on ŜN
and tnp is discussed. It will be assumed here that the general
framework that has been developed for investigating
correlations between Kd and K is applicable for SN and K,
subject to the consideration of constraints specific to NAPL
contamination. Field measurements have indicated an
approximately linear relationship between the logarithms
of Kd and K [Robin et al., 1991; Tompson, 1993]. By
substituting S = SN/(1 � SN) for Kd and adding an
uncorrelated component, W, this relationship can be
expressed as follows:

ln S ¼ ln aþ b lnK þ c lnW ð27Þ

where W is a lognormally distributed random variable
(mlnW = 0, slnW = slnK) with the same spatial correlation
structure as the K field, but uncorrelated to log conductivity.
Note that as with Ŝ and ŜN above, S, not SN, is assumed to
be lognormally distributed and correlated to K; however, for
low NAPL saturations, S approaches SN.
[36] A relation similar to (27) was employed by Cvetkovic

et al. [1998]. For b 6¼ 0, S and K approach perfect
correlation (i.e., rS,K = ±1) as c ! 0, while b = 0 results in
the uncorrelated case. A simplified approach is to assume
ln a = c = 0 and investigate the effects of perfect positive
and negative correlation, with b > 0 and b < 0, respectively.
Modeling and analytical studies often implement this
approach with b = ±1 [e.g., Bellin et al., 1993; Bosma et
al., 1993; Soerens et al., 1998]. However, the resulting
variability in S or Kd will be equivalent to the K variability
and may be unrealistically high. Tompson [1993] selected
values of ln a and b to more closely mimic field
measurements, but only investigated perfect correlation
(i.e., c = 0).
[37] For each slnK

2 , separate particle tracking simulations
were conducted assuming zero, positive, and negative
correlations between S and K. Based on the arguments
presented above, a relatively large value of c = 0.75 was
selected here to create a weak correlation between S and K,
and values of b = ±0.3 were selected to restrict the S values
to a more limited range than K. Note that by rewriting (27)
as S = aKbWc, it is apparent from (16) that mlnS = ln a and
slnS = (b2slnK

2 + c2slnW2 )0.5. For each flow field, the average
NAPL saturation was set to �SN = 0.05 using a = {0.052,
0.049, 0.038, 0.027, 0.014, 0.007} for increasing values of
slnK
2 , respectively. For the uncorrelated cases, c = 0.808 was

selected to maintain the same S distribution mean and
variance as the correlated cases.

3.3. Streamtube Average NAPL Saturation

[38] The average value of S that was observed along the
trajectory of each particle was calculated as follows:

Ŝ ¼

ZL
0

S xð Þdx
v xð Þ

ZL
0

dx

v xð Þ

ð28Þ

where the inverse velocity integrated over trajectory length L
is the travel time. The resulting trajectory-mean Ŝ values are
analogous to the Lagrangian reaction flow path parameter,
M, described by Cvetkovic et al. [1998]. It is emphasized
that it is the Ŝ distribution for which statistics may be
determined from (19)–(21).
[39] The simulations for log conductivity variance slnK

2 =
{0.2, 1.0} were conducted with f = {0.1, 0.4, 0.6, 1.0}
and {0.25, 0.5, 0.75, 1.0}, respectively. For a randomly
selected fraction (1-f ) of the particle trajectories, KN = 0
was imposed so that the nonpartitioning and partitioning
tracer arrival times would be equal. For the remaining
particle trajectories (i.e., the contaminated fraction), tp,c was
determined from the nonpartitioning tracer arrival time as
described in (15) with KN = 20.
[40] The Ŝ values determined from (28) were weighted by

v0,i in order to represent a flux-averaged injection condition.
The measured statistics of this distribution were compared
to the estimates determined from the tracer temporal
moments and (19)–(21).

3.4. Simulation Results

3.4.1. Nonpartitioning Tracer Transport
[41] The nonpartitioning tracer travel time distribution

measured from each flow field was well described by a
lognormal distribution. The lognormal model parameters
mlnt,np and slnt,np were determined for each flow field from
the nonpartitioning tracer normalized first and second
temporal moments using (22) and (23). The flux-weighted
measured nonpartitioning tracer CDF for slnK

2 = 1 is shown
in Figure 2 with the corresponding fit of (1) (partitioning
tracer CDFs, discussed below, are also shown in Figure 2).
Nonpartitioning tracer CDFs for the other slnK

2 values tested
here were equally well represented by lognormal distribu-
tions (not shown).
[42] The parameters mlnt,np and slnt,np

2 that were estimated
for each flow field are shown in Figure 3 as a function slnK

2 .
A linear relationship was observed between slnK

2 and slnt,np
2 ,

with a slope of 0.16, indicating that much of the variability
in the point statistics was damped out in the integrated
measure and the degree of dampening did not change
as system variability increased. Similar effects were also
reflected in the Ŝ distribution statistics, discussed below.
Also note that mlnt,np decreased as slnK

2 increased, with a
slope of �0.21, indicating that the Lagrangian velocity
through the flow field increased with slnK2 . This result is
consistent with Lagrangian stochastic theory [e.g., Demmy,
1999].
3.4.2. Partitioning Tracer Transport
[43] Measured partitioning tracer CDFs are shown in

Figure 2 for zero, positive, and negative correlation between
K and S for slnK

2 = 1 with contaminated fractions f = {0.25,
0.75, 1.0}. The CDFs from the other flow fields showed
similar trends. Model parameters were determined from the
nonpartitioning and partitioning tracer moments, and model
CDFs were generated from the superposition of solutions of
(1) for the uncontaminated and contaminated zones, as
discussed above. The model fits matched the measured
CDFs closely.
[44] Positive correlation between K and S (b > 0) led to

greater partitioning tracer retardation than for the uncorre-
lated case, while negative correlation led to less retardation.
Similar effects with K and Kd correlations have been
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observed in numerical simulations by Tompson [1993] and
predicted theoretically by several investigators [Dagan,
1989; Kabala and Sposito, 1991; Cvetkovic et al., 1998].
These effects increased as log conductivity variance
increased (Figure 4), with approximately symmetric magni-
tudes for positive and negative correlations. Note that the
coupled effects of media heterogeneity and positive
correlations between K and S may result in overpredictions
of the amount of NAPL present in a system, while negative
correlations may result in underpredictions.
[45] Also, partitioning tracer CDFs for b < 0 exhibited

enhanced spreading compared to b = 0, while b > 0 led to
reduced spreading (Figure 2). This effect has also been

either predicted or observed by several investigators
[Kabala and Sposito, 1991; Bellin et al., 1993; Bosma et
al., 1993; Tompson, 1993]. Correlation effects on tracer
CDF spreading, quantified by the second central moment
(m02,p = m2 � m1

2), were also enhanced as log conductivity
variance increased (Figure 5).
3.4.3. NAPL Saturation Distribution
[46] The actual and estimated model parameters that

describe the NAPL saturation distribution are compared in
Figure 6 and Table 1. For all values of f, slnK

2 , and b that were
evaluated, the estimated values of f matched the measured
values closely (Figure 6). The Ŝ distribution model para-
meters (mln Ŝ , sln Ŝ , and rt;Ŝ) estimated from (19)–(21) also
compared favorably with the measured values (Table 1).
The reported values are the mean and standard deviation
from the four f values tested for each combination of slnK

2

and b. The RMSD between the measured and model fit

Figure 2. Nonpartitioning and partitioning tracer CDFs
from particle tracking simulations with slnK

2 = 1.0. Simula-
tion results (points) are compared with model fits (lines)
determined from CDF moments and (19)– (21) (i.e.,
distributed binary model) for (a) f = 0.25, (b) f = 0.75,
and (c) f = 1.0.

Figure 3. Nonpartitioning travel time lognormal model
parameters, slnt,np

2 and mlnt,np, as a function of log
conductivity variance, slnK2 . Dashed lines are linear
regressions.

Figure 4. Partitioning tracer retardation, R, as a function of
log conductivity variance slnK

2 for zero, positive, and
negative correlation between K and S. Dashed lines are
linear regressions.
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partitioning tracer first three normalized temporal moments
is also reported. The correlation between the nonpartitioning
tracer travel time and Ŝ, rt;Ŝ , was calculated using (17). Note
that, because of the inverse relationship between K and t, a
positive correlation between K and S resulted in a negative
value of rt;Ŝ , and vice versa.
[47] As was observed with K and tnp, much of the point

variability in S was damped out in the trajectory-integrated
measure, Ŝ. A linear relationship was observed between
slnS
2 and s2

ln Ŝ
, with a slope of 0.29 ± 0.04 (mean and

standard deviation for the three correlation cases, Figure 7),
again indicating that the degree of dampening did not
change with system variability. The measured correlations
between tnp and Ŝ were also affected by system hetero-
geneity. The absolute values of rt;Ŝ decreased linearly with
slnK
2 , with symmetric slope absolute values of 0.04 for both

correlated cases (Figure 8). Note, however, that while rt;Ŝ
decreased with slnK

2 , the relative effects of a correlation

between K and S on reactive tracer travel time mean and
variance increased with log conductivity variance (Figures 5
and 7).
[48] The errors associated with ignoring the correlation

between K and S were also investigated. The estimated
Ŝ distribution parameters that resulted when the constraint
rt;Ŝ = 0 was imposed for slnK

2 = 0.2 and b < 0 are listed
in Table 1. Note that very good agreement was obtained
with the measured partitioning tracer moments (as reflected
in the RMSD) and mln Ŝ , but the sln Ŝ estimates were
relatively poor (as were, of course, the rt;Ŝ estimates). These
results point to the potential pitfall, when using tracer BTC
moments for parameter estimation, of multiple solutions
producing moment estimates that are quite close to the
measured values. In this example, assuming rt;Ŝ = 0 allowed
algebraic solution of (19)–(21) and, thus, a low RMSD.
While the more-correct solutions (i.e., rt;Ŝ 6¼ 0) produced
lower RMSD values here (Table 1), it may be difficult to

Figure 5. Second central moment, m02,p, for partitioning
tracer travel time tp and variance of trajectory-average
NAPL saturation sln Ŝ

2 as a function of log conductivity
variance slnK

2 for zero, positive, and negative correlation
between K and S.

Figure 6. Measured and estimated values for contami-
nated fraction f for zero, positive, and negative correlation
between K and S. Results for f = {0.1, 0.4, 0.6, 1.0} and
{0.25, 0.5, 0.75, 1.0} are from simulations with slnK

2 = 0.2
and 1.0, respectively. Dashed line is 1:1 relationship.

Figure 7. Relationship between variances of trajectory-
average and local NAPL contents, s2

ln Ŝ
and slnS

2 , for zero,
positive, and negative correlation between K and S. Dashed
line is a linear regression.

Figure 8. Measured correlation between partitioning
tracer travel time and trajectory-average NAPL saturation
as a function of slnK

2 for zero, positive, and negative
correlation between K and S. Dashed lines are linear
regressions.
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differentiate between the solutions for rt;Ŝ = 0 and rt;Ŝ 6¼ 0
with no prior information as to the expected correlation
between K and S. However, while the Ŝ distribution
parameters rt;Ŝ and sln Ŝ for this case did not accurately
reflect the true distribution, the estimated f values were
nearly identical to the ‘more-correct’ model fit values
shown in Figure 6 (the average relative difference was
0.13%). This result suggests that for moderate correlations
between K and S, reasonable estimates of the fraction of the
streamtubes in the domain that are contaminated may be
obtained even if correlation effects are ignored.
[49] Finally, it is noted that the effects on the retardation

and spreading of the partitioning tracer CDFs that resulted
from correlations between K and S were manifestations of
the effects of these correlations on the Ŝ distribution. A
positive correlation between K and S resulted in increased
mln Ŝ and decreased sln Ŝ values, with reverse relationships
for negative correlation (Table 1). The linkage between the
spreadingofthe Ŝ and tp distributions is illustrated in Figure 5,
where s2

ln Ŝ
and m02,p are shown as functions of slnK

2 .

3.5. Summary of Simulation Results

[50] The particle tracking simulations indicated that (1)
Local (point) parameter variability (quantified by slnK

2 and
slnS
2 ) was linearly damped in the statistics of trajectory-

averaged parameters (slnt,np2 and s2
ln Ŝ

), (2) Reactive tracer
retardation and spreading increased with increasing
hydraulic conductivity variance, and with negative correla-
tion with NAPL content, and (3) The distributed binary
model enabled accurate estimation of NAPL spatial
distribution parameters for a range of hydraulic conductivity
variances with correlations between K and S. The observed
relationships between local and integrated parameters
may be useful for empirically relating tracer test results to
point measurements, or for comparison with theoretical
relationships between point and integrated statistics such as
those that may be developed in the stochastic Lagrangian
framework [e.g., Cvetkovic et al., 1998; Demmy et al.,
1999].

4. Laboratory Studies

[51] Laboratory experiments were conducted in a flow
chamber that was packed with various combinations of
clean 20–30 mesh Ottawa sand and sand mixed with
n-decane, resulting in a range of contaminated fractions
f = {0.16, 0.29, 0.38, 0.48, 0.57}. Partitioning tracer tests
were conducted for each combination, and nonpartitioning
and partitioning tracer BTC moments were calculated with
the goal of recovering the design parameters f and �SN using
the homogeneous and distributed binary models. The relative
impacts of nonlinear and nonequilibrium partitioning on the
estimation of these parameters were also investigated.

4.1. Nonequilibrium and Nonlinear Partitioning

[52] Valocchi [1985] described the effects of nonequili-
brium sorption, or partitioning, on solute BTCs and ADE
temporal moments, demonstrating that nonequilibrium
effects lead to enhanced spreading (i.e., larger second and
third moments) relative to equilibrium conditions. Jin et al.
[1995] found that pore water velocities of 0.5 to 1.5 m/d
were slow enough to approximate equilibrium conditions
for partitioning of alcohol tracers into tetrachloroethylene.

The models developed here are based on the assumption
that partitioning tracer residence times are sufficient to
ensure equilibrium partitioning. However, the velocities
suggested by Jin et al. [1995] are quite low and may be
impractical for field-scale experiments. In addition, Willson
et al. [2000] observed nonequilibrium partitioning effects in
laboratory-scale tracer tests conducted at higher velocities.
Thus, the impact of using higher velocities was investigated
in the laboratory experiments reported below.
[53] While the partitioning of alcohol tracers into

NAPLs has been demonstrated to be nonlinear [Wise et
al., 1999], which may lead to significant errors in �SN
estimates if partitioning is assumed to be linear [Wise,
1999], the common practice of using a suite of partitioning
tracers [e.g., Jin et al., 1995; Annable et al., 1998] has been
shown to cause partitioning behavior to approach linearity
[Wise, 1999]. Thus, for this work, wherein at least two
partitioning tracers were always used in concert, linear
partitioning was assumed. Also, Wise [1999] suggested that
consideration of isotherm linearity should be made during
tracer selection and that nonlinear effects can be minimized
by using low tracer injection concentrations. The effect of
varying tracer injection concentrations, and thus, the degree
of nonlinearity, was investigated in the laboratory experi-
ments described below.

4.2. Laboratory Experimental Methods

[54] The laboratory flow chamber was similar in design to
that described by Jawitz et al. [1998a]. The open-top
chamber enclosed a volume of 62 cm length, 1.4 cm width,
and 39 cm height and was constructed of two glass plates
closed on three sides by 1.3 cm square aluminum tubing.
The vertical sections of tubing on either end were slotted to
a width of 0.03 cm at a frequency of 4 slots per cm, enabling
homogeneous injection and extraction of fluids. Clean
zones were packed by slowly pouring untreated sand into
standing water in the chamber, while contaminated zones
were created by adding premixed sand, water, and n-decane
in approximately 10-g increments. Decane was selected as
the NAPL because of its low aqueous solubility (0.009 mg/L
[Verschueren, 1983]), facilitating multiple tracer tests
without significant NAPL mass loss due to dissolution.
The water table was maintained at the top of the media
during the addition of contaminated sand to minimize
gravity segregation of the sand, water, and decane during
emplacement.
[55] In the initial experiment, labeled configuration 1

(C1, Table 2), 5.4 mL of n-decane were thoroughly mixed
with 731 g of clean sand and emplaced in a 5 cm high
contaminated layer wherein the NAPL was assumed to be
homogeneously distributed. An additional 548 g of clean
sand were added, resulting in a total packed height of
8.5 cm, total pore volume (PV) of 270 mL, and �SN = 0.020.
The resulting contaminated fraction f = 0.57 was based on
the total masses of clean and contaminated sand that were
packed; however, the effective volumetric fraction may
have varied from the mass-based value because of non-
uniform packing or trapped air.
[56] For C2, the flow chamber was repacked with 7.5 mL

of n-decane (more NAPL was added to increase partitioning
tracer retardation) in a 5 cm layer with an additional 797 g
of clean sand, resulting in f = 0.48 and �SN = 0.023. For
subsequent configurations, the contaminated fraction was
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sequentially reduced by adding clean sand to the top of the
packing. The total packed height and the total mass of clean
and contaminated sand in each packing are listed in Table 2.
The mean and standard deviation bulk density of the five
packing configurations was 1.76 ± 0.05 g/cm3, which,
assuming a sand grain density of 2.65 g/cm3, corresponds to
porosity h = 0.34 ± 0.02.
[57] A constant head reservoir was used to deliver fluids to

the flow chamber through the injection well, and a positive
displacement pump (Masterflex L/S drive equipped with a
Fluid Metering Inc. Q Pump head) was used to remove fluids
through the extraction well. The effluent was pumped
through an in-line flow cell attached to a gas chromatograph
equipped with an autosampler (Perkin Elmer AutoSystem),
allowing quantification of tracer concentrations without
manual sampling [Jawitz et al., 2002]. For each partitioning
tracer test, a tracer pulse of approximately 0.15 PVs was
delivered to the injection well with a syringe pump (Harvard
Apparatus 22) during steady-state water flow. During each
tracer test, wax paper was placed over the media-air
interface to minimize volatile losses of tracers. Experiments
were continued until tracer concentrations measured in the
effluent were below detection limit (generally 1 mg/L). The
measured BTCs were relatively complete, but exponential
extrapolation [Sater and Levenspiel, 1966] was employed to
improve moment estimate accuracy.
[58] Methanol was used as the nonpartitioning tracer,

with 2,2-dimethyl-3-pentanol (DMP) and 6-methyl-2-
heptanol (6M2H) as partitioning tracers. The fluid flow
rates and tracer initial concentrations were varied for C2
(Table 2) to investigate the effects of nonequilibrium and
nonlinear partitioning, respectively. Average pore water
velocities and tracer injection concentrations for each of
these experiments are also listed in Table 2.
[59] The velocity of experiment C2-1 was chosen as an

upper limit of approximately 10 times that suggested by Jin
et al. [1995] for equilibrium conditions. Velocities lower
than 1.4 m/d (C2-7) were not investigated because of
concerns about mass loss of tracers due to volatilization.
Also, field experimental experience suggests that lower

velocities may not be practical for field implementation
[Annable et al., 1998; Jawitz et al., 1998c, 2000].
[60] The aqueous solubility of DMP has been reported to

be 8200 mg/L [Barton, 1984] and the solubility of 6M2H
was estimated to be approximately 3000 mg/L (based on the
solubilities of other methylated heptanols, as reported by
Barton [1984]). The relatively low Co values for DMP and
6M2H in C2-1 (approximately 6% of aqueous solubility)
were selected to minimize the effects of NAPL-water tracer
partitioning isotherm nonlinearities, demonstrated by Wise
[1999] to become significant at Co values above approxi-
mately 10% of aqueous solubility. In subsequent experi-
ments, these Co values were varied to ascertain whether
nonlinear partitioning was a factor in these experiments.
Decane-water partitioning coefficients for DMP and 6M2H,
KN = 12 and 25, respectively, were measured using batch
equilibration methods.

4.3. Laboratory Results

4.3.1. Nonlinear and Nonequilibrium Partitioning
[61] The measured partitioning tracer BTCs from

C2-1–C2-7 are shown in Figures 9a (C2-3–C2-6) and 9b
(C2-7, C2-4, C2-2, and C2-1), where each BTC was scaled
to its zeroth moment (note that relative concentration, C/C0,
is plotted on log scale). The partitioning tracer BTCs were
bimodal, with the first and second modes reflecting
transport through the uncontaminated zone and contami-
nated zones, respectively, as expected for a homogeneous
binary NAPL distribution [Jawitz et al., 1998b]. The
nonpartitioning tracer behavior was very similar for each
experiment, indicating consistent hydrodynamics (these
BTCs were omitted from Figure 9 to more clearly reveal
the partitioning tracer behavior), with mlnt,np = 0.059 ± 0.003
and slnt,np = 0.119 ± 0.015 for C2-1–C2-7 (determined
from tracer normalized temporal moments, units of PVN,
using (22) and (23)).
[62] The tracer transport behavior in C2-3, C2-4, C2-5,

and C2-6 (Figure 9a) was very similar, despite the fact that
these experiments were conducted with tracer C0 values
ranging from approximately 3 to 18% of aqueous solubility.
Wise [1999] demonstrated that the effects of isotherm
nonlinearities would be expected to increase with C0. The
results presented here, therefore, indicate that partitioning
isotherm nonlinearities were not a significant concern in
these experiments. However, the BTCs presented in
Figure 9b, which are from experiments conducted at four
different pore water velocities, show increased spreading
in the second mode as pore water velocity increased, as
would as would be expected for rate-limited sorption, or
partitioning [e.g., Valocchi, 1985]. Thus, these results
indicate that nonequilibrium partitioning likely was a factor
in these experiments.
[63] In some low-velocity experiments, it was observed

that the spreading of the first mode of the partitioning tracer
BTCs was greater than that of the nonpartitioning methanol
BTC. It is likely that at very low velocities tracer diffusion
between the contaminated and uncontaminated zones is not
negligible. Therefore, subsequent experiments were con-
ducted at intermediate velocities, despite possible partition-
ing rate limitations.
4.3.2. Estimation of f and �SN

[64] The first three normalized temporal moments deter-
mined from the nonpartitioning and partitioning tracer BTCs

Table 2. Laboratory Experimental Configurations, Including Pore

Water Velocities, Partitioning Tracer Initial Concentrations, Pore

Volume (PV), Domain-Average NAPL Saturation, and Contami-

nated Fraction for Each Experimenta

Experiment Number
v,
m/d

DMP,
mg/L

6M2H,
mg/L

Height,
cm

Clean
Sand,
g

PV,
mL �SN f

Configuration 1 11 300 300 8.85 548 270 0.020 0.57
Configuration 2 10.4 797 317 0.022 0.48
C2-1 (v0, C0) 17 500 180
C2-2 (v0/2, C0) 8.7 500 180
C2-3 (v0/6, 0.5C0) 2.9 250 90
C2-4 (v0/6, C0) 2.9 500 180
C2-5 (v0/6, 2C0) 2.9 1000 360
C2-6 (v0/6, 3C0) 2.9 1500 540
C2-7 (v0/12, C0) 1.4 500 180

Configuration 3 8.9 1500 540 13.0 1197 421 0.018 0.38
Configuration 4 9.4 1500 540 16.7 1797 553 0.014 0.29
Configuration 5 10 1500 540 29.0 3827 954 0.008 0.16

aMethanol initial concentrations were 2500 mg/L for all experiments
except C1 (2000 mg/L). The mass of sand in the contaminated zone was
731 g for each experiment. Note that partitioning tracer C0 values were
equivalent to approximately 6% of aqueous solubility.
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are presented in Table 3. Results from C2-4 were selected to
represent configuration 2. The domain-average NAPL satu-
ration �SN was estimated for each configuration from both the
DMP and 6M2H data using first moment analysis (i.e., using
(4) and (5) after Jin et al. [1995]). The average relative
difference between the actual and estimated �SN values from
both tracers for all experiments was 0.02 ± 0.15.
[65] Parameters describing the NAPL saturation distribu-

tion were determined for each experimental configuration
using both the homogeneous and distributed binary models
(Table 3). The homogeneous binary model parameters were
determined by algebraic solution of (13) and (14) using the
first and second temporal moments of the measured tracer
BTCs, while the distributed binary model parameters were
determined by algebraic solution of (19)–(21) using the
first, second, and third moments. For these experiments,
rt;Ŝ = 0 was assumed. The model BTCs generated using the
homogeneous and distributed model parameters are com-
pared to the measured BTCs in Figures 10 and 11, respec-
tively. Note that as f decreases, the proportion of a
partitioning tracer BTC that results from transport through
the contaminated zone decreases. Thus, the size of the
second mode of the measured partitioning tracer BTCs
decreases with f (Figure 10).
[66] The assumption of a uniform �SN,c limited the

capability of the homogeneous model to capture the degree
of spreading that was observed in the partitioning tracer
BTC second modes (i.e., the contaminated zone portion)
(Figure 10). Inclusion of the third moment and an additional
model parameter (i.e., the variability of the Ŝ distribution) in
the distributed model provided the flexibility to account for
the observed excess spreading that may have resulted from
either nonuniform NAPL distribution within the contami-
nated zone or rate-limited partitioning, and thus enhanced
the goodness-of-fit of the model to the measured data
compared to the homogeneous model (Figure 11). It is
noted, however, that the f estimates were close to the true
values for both models (Figure 12).
[67] Note that because of the ability of the distributed

model to capture the observed excess spreading, the �Sc

values (reflected in mŜ
1) that were required to match the

measured moments were lower than for the homogeneous
model. Therefore, in order to maintain equal domain-aver-
age �SN values, the distributed model produced slightly
higher f estimates than the homogeneous model (0.11 ±
0.06 relative difference for both tracers in all configura-
tions). Thus, the two cases with the closest match between
f estimates for the two models, f = {0.48 DMP, 0.16 DMP},
corresponded to the lowest values of sln Ŝ (i.e., the most
homogeneous of the distributed model results), and resulted
in the most similar fits to the measured data between the
homogeneous and distributed models (DMP in Figures 10b
and 11b and 10e and 11e).

5. Field Studies

[68] The distributed binary model was applied to data
from field-scale partitioning tracer tests conducted at two
NAPL-contaminated sites: Hill Air Force Base (AFB), UT
and Jacksonville, FL. Detailed descriptions of these studies
are given by Jawitz et al. [1998b, 2000], respectively.

5.1. Background and Methods

[69] The two field sites were contaminated with different
types of NAPL, leading to different NAPL spatial distribu-
tions. The multicomponent NAPL at Hill AFB was less
dense than water (LNAPL), while the primary contaminant
at the Jacksonville site, tetrachloroethylene (PCE), was
denser than water (DNAPL).
[70] Light NAPLs float on the water table, often creating

smear zones as the water table fluctuates seasonally. At the
Hill AFB site, the mean water table position was only
approximately 1 m above a clay confining unit at 8 m below
ground surface (bgs). Soil core data indicated a NAPL smear
zone extending up from the clay to approximately 5 m bgs.
The soil concentration profile for n-undecane, the most
prevalent of the NAPL constituents at a mass fraction of
1.57g/100g, is presented in Figure 13; similar behavior was
observed for the other NAPL constituents as well (data not
shown). These data represent 85 subsamples from 8 borings

Figure 9. Partitioning tracer BTCs from experiments with (a) equivalent velocities v = 2.9 m/d, but
varying initial concentrations (C2-3, C2-4, C2-5, and C2-6), and (b) equivalent initial concentrations,
approximately 6% of aqueous solubility, but varying velocities (C2-7, C2-4, C2-2, and C2-1).
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collected within the tracer swept volume during installation
of wells and multilevel samplers.
[71] The Hill AFB experiments were conducted within a

hydraulically isolated sheet pile test cell, enabling manipu-
lation of the water table. During partitioning tracer tests, the
water table in the test cell was maintained at approximately

5 m bgs (3 m above the clay) in order to capture the entire
NAPL smear zone. Thus, it was expected that most of the
streamlines within the test cell would intercept some NAPL
( f ! 1.0).
[72] At the Jacksonville site, the areal and vertical extent

of the NAPL source zone was less clear. Soil cores indicated

Table 3. Measured Nonpartitioning and Partitioning Tracer Moments (Units of PVN) and Estimated NAPL Distribution Model

Parameters for Each Laboratory Experimenta

Tracer

Measured Moments
Homogeneous

Model Distributed Model

m1 m2 m3 �SN f �SN f mln Ŝ sln Ŝ �SN

C1
Methanol 1.09 1.21 1.37
DMP 1.29 1.73 2.45 0.016 0.51 0.016 0.56 �3.55 0.294 0.016
6M2H 1.49 2.46 4.51 0.016 0.45 0.016 0.53 �3.56 0.395 0.016

C2
Methanol 1.07 1.15 1.27
DMP 1.28 1.70 2.36 0.017 0.50 0.017 0.50 �3.35 0.106 0.017
6M2H 1.58 2.81 5.58 0.020 0.50 0.020 0.57 �3.38 0.376 0.020

C3
Methanol 1.07 1.17 1.32
DMP 1.27 1.72 2.54 0.016 0.34 0.016 0.40 �3.26 0.423 0.016
6M2H 1.61 3.04 6.75 0.021 0.43 0.021 0.48 �3.14 0.325 0.021

C4
Methanol 1.07 1.17 1.33
DMP 1.23 1.63 2.36 0.013 0.25 0.013 0.30 �3.16 0.411 0.013
6M2H 1.48 2.67 5.87 0.016 0.30 0.016 0.33 �3.01 0.294 0.016

C5
Methanol 1.07 1.17 1.30
DMP 1.17 1.47 2.10 0.008 0.12 0.008 0.12 �2.56 0.001 0.008
6M2H 1.31 2.14 4.56 0.010 0.15 0.010 0.16 �2.82 0.325 0.010

aDomain-average NAPL saturations, �SN, were determined from measured first moments using equations (4) and (5), and from the
distributed model parameters using equation (3) (with mŜ

1 ¼ �Sc) and �SN = f �Sc/(1+�Sc). Moment estimates obtained from both
models were very close to the measured values (generally within 1%). Results from C2-4 were selected to represent
configuration 2.

Figure 10. Measured nonpartitioning and partitioning tracer BTCs from (a) C1, (b) C2-4, (c) C3, (d)
C4, and (e) C5, each shown with the homogeneous binary model fit.
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a NAPL source zone between 7 and 10 m bgs that consisted
of thin layers of separate phase PCE that were not neces-
sarily horizontally continuous over the extent of the source
zone. Example soil concentration profiles are presented in
Figure 14. These data illustrate that much of the aquifer was
uncontaminated. However, because of the likely presence of
areally discontinuous NAPL layers located at different
elevations throughout the source zone, the fraction of
horizontal trajectories intercepting some amount of NAPL
was likely greater than might be estimated from examina-
tion of individual borings.
[73] During tracer tests at the Jacksonville site, the

DNAPL source zone was not physically bounded by sheet
pile walls, the confining clay layer (located at approximately
11 m bgs), or the water table (approximately 3 m bgs), as at
the Hill AFB site. Therefore, it was likely that some of the
tracer solution followed streamlines through portions of the
aquifer that were either above or below the NAPL source
zone. Thus, while a precise a priori estimate of the fraction
of the streamlines that might have intercepted some NAPL
was not possible, it was estimated that a measurable fraction
of the streamlines would be uncontaminated (i.e., f < 1.0).
[74] Methanolwasused as thenonpartitioning tracer at both

sites and the partitioning tracers were DMP (KN = 10.7) and
2-ethyl-1-hexanol (e-HEX, KN = 81) at the Hill AFB and
Jacksonville sites, respectively. Both studies were con-
ducted at flow rates that were equivalent to approximately
1 PV per day, with tracer input pulse durations t0 = 0.16
and 0.20 PV for the Hill AFB and Jacksonville sites,
respectively. The Hill AFB study was conducted in a line-
drive pattern, with four injection wells and three extraction
wells, with a mean pore water velocity of approximately
4 m/d. The results presented here are for the flux-average of
the tracer BTCs measured at all three extraction wells. This
approach represents information integrated over the entire

test cell volume. The Jacksonville study was conducted with
six recovery wells encircling three injection wells, with a
mean velocity of approximately 7 m/d. The results
presented here are from two recovery wells, labeled RWs
3 and 7, that represented the most DNAPL in their
respective swept volumes, and the most reliable partitioning
tracer results of all the recovery wells at the Jacksonville site
(see Jawitz et al.’s [2000] Tables 1 and 2, respectively).

5.2. Moment Calculation and Model PDF Generation

[75] The BTCs from the laboratory experiments pre-
sented above were complete enough that simple exponen-
tial extrapolation provided adequate moment estimates;
however, the BTCs from the field experiments were trun-

Figure 11. Measured nonpartitioning and partitioning tracer BTCs from (a) C1, (b) C2-4, (c) C3, (d) C4,
and (e) C5, each shown with the distributed binary model fit.

Figure 12. Measured and estimated values for contami-
nated fraction f from DMP and 6M2H BTC moments and
the homogeneous and distributed binary models. Dashed
line is 1:1 relationship.
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cated because of the dual limitations of analytical detection
and experiment duration. Helms [1997] described a method
for obtaining accurate estimates of complete moments from
incomplete data by nonlinear regression of an appropriate
model to the data. Helms [1997] found that the super-
position of multiple ADE solutions performed well for
fitting asymmetric BTCs characterized by an early peak
followed by a long, dispersed tail typical of many field-
measured BTCs. Following Helms [1997], the superposition
of two lognormal distributions, similar to (25), was found to
be sufficient to accurately fit the measured data:

p tnp
� �

¼ 1� Fð Þp1 tð Þ þ Fp2 tð Þ ð29Þ

where (1 � F ) and F represent the fractional contributions
of the lognormal PDFs p1(t) and p2(t). Complete moment

estimates were then calculated for the incomplete BTC data
using F and the parameters of p1(t) and p2(t) in a manner
analogous to (10).
[76] While a sum of lognormal distributions may be

approximated as lognormal, a superposition of lognormal
distributions may not. That is, the sum of i lognormal
distributions Z = p1 + p2 + ��� + pi is lognormal [Schwartz
and Yeh, 1982; Abu-Dayya and Beaulieu, 1994], but the
superposition Y = (1 � F )p1 + Fp2, which may be bimodal,
is not lognormal. Therefore, for cases where multimodal
nonpartitioning tracer models are required, such as the field
experiments reported here, tnp is not lognormal and tp,c,
therefore, may no longer be considered as a simple sum of
lognormal distributions. In these cases, tp,c must be
determined numerically by summing the CDFs of each term
in (11) or (15). In the distributed binary model, for example,
the CDF of the first term of (15), tnp, is determined by
integrating the PDF determined from the superposition
relation (29). The third term of (15) is a lognormal
distribution multiplied by a constant and the CDF is
generated by simply integrating the PDF. However, determi-
nation of the CDF for the second term of (15) requires
multiplication of the CDFs for Ŝ and tnp. Themodel-predicted
partitioning tracer BTC can then be determined by
numerically differentiating the sum total CDF of (15).
However, numerical differentiation may be subject to
considerable errors (for a discussion of the potential pitfalls
of numerical differentiation, see Atkinson [1985]). Therefore,
the BTCs measured from the field experiments were
numerically integrated such that comparisons were made
between measured and modeled CDFs, rather than PDFs.

5.3. Field Results

[77] The first three temporal moments determined from
measured nonpartitioning and partitioning tracer BTCs from
both studies are presented in Table 4 (units are dN). Tracer
CDFs were determined by scaling the measured BTCs to
their zeroth moments and integrating. Measured CDFs from
the field studies are presented in Figures 15 and 16 along
with the model fits for each. For both studies, the
partitioning tracer CDFs that resulted from the application

Figure 13. Soil concentration profile at Hill AFB, UT
field site for n-undecane (determined from methylene
chloride extracts of soil samples; n = 85 subsamples
collected from eight borings). Water table position during
tracer tests was maintained at approximately 5 m bgs (3 m
above a clay layer found at 8 m bgs). Data were originally
published by Jawitz et al. [1998c].

Figure 14. Soil concentration profiles at Jacksonville, FL, field site for PCE. Data are shown from two
borings collected during installation of a multilevel sampler (MLS1) and an injection well (IW 2). Data
were originally published by Jawitz et al. [2000].
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of the distributed binary model closely matched the
measured data.
[78] For both studies, accurate modeling of the nonparti-

tioning tracer transport required the superposition of two
lognormal distributions; the resulting lognormal parameters
are listed in Table 4. Because of the bi-continuous nature
of the nonpartitioning tracer BTCs, algebraic solution of
(19)–(21) was not possible for these data. The NAPL
saturation distribution parameters (Table 4) were determined
from (19)–(21) by minimizing the RMSD between the
measured and estimated partitioning tracer first three nor-
malized temporal moments. In the absence of data support-
ing a correlation between K and SN, rt;Ŝ = 0 was assumed for
both field sites.
[79] The relatively small sln Ŝ values that were determined

for both field sites indicated that, within the contaminated
zone, the NAPL saturation distributions were not particu-
larly variable. It, therefore, should not be surprising that
application of the homogeneous binary model to these data
produced model fits (not shown) that were similar to those
presented in Figure 15, with NAPL distribution parameters
that were consistent with those in Table 4 ( f = {1.0, 0.44,
0.51}, �SN = {0.056, 0.003, 0.004} for Hill AFB and
Jacksonville RWs 3 and 7, respectively). These data suggest
that accurate characterization of nonpartitioning tracer trans-
port (e.g., through the superposition of multiple transport
equations) and the fraction of the domain that is contami-
nated (using either the homogeneous or distributed binary
models) may be sufficient to adequately characterize parti-
tioning tracer transport, and thus the NAPL saturation
distribution, even when the impact of other factors such
as nonequilibrium partitioning and correlations between K
and SN are ignored. Finally, it is emphasized that the
estimated f values for both sites were consistent with
qualitative expectations based on the type of NAPL and the
flow geometry at each site.

6. Discussion and Conclusions

[80] The application of moment equations derived from
one-dimensional solute transport models to BTCs generated
from multi-dimensional transport processes, as was done

here, results in parameters that are representative of equiv-
alent one-dimensional processes. An alternative approach
for relating BTC moments to parameters that are descriptive
of multi-dimensional transport processes is the stochastic
Lagrangian framework that has been developed to consider
nonreactive and reactive solute transport in multi-dimen-
sional heterogeneous porous media [e.g., Dagan, 1989;
Cvetkovic and Shapiro, 1990; Bellin et al., 1993; Cvetkovic
et al., 1998; Demmy et al., 1999].
[81] The appeal of the Lagrangian approach is that non-

reactive and reactive tracer BTC moments can be estimated a
priori based on statistics that describe the point variability of
the media and contaminant properties, with the presumption
that these statistics can be estimated through point sampling.
Here, conversely, the focus is on the inverse problem of
estimating unknown media and NAPL saturation distribu-
tion parameters from tracer BTCs. The models described
above allow for the determination of the distribution of travel
times and NAPL saturations between streamtubes, not the
point distribution. Therefore, the relationship between point
and trajectory-average variability was investigated using

Table 4. Nonpartitioning and Partitioning Tracer Moments (Units of dN) and NAPL Saturation Distribution Parameters for the Hill AFB,

Utah, and Jacksonville, Florida, Field Tracer Experimentsa

Tracer

Moments Model Parameters

m1 m2 m3 �SN F mlnt,1 slnt,1 mlnt,2 slnt,2 f mln Ŝ sln Ŝ �SN

Nonpartitioning
Hill AFB 1.23 2.93 16.0 0.19 �0.193 0.438 0.712 0.704
Jax, RW 3 0.686 1.00 2.88 0.49 �1.24 0.390 �0.190 0.719
Jax, RW 7 1.06 2.33 10.4 0.80 �0.865 0.193 �0.127 0.809

Partitioning
Hill - DMP 2.05 7.72 56.0 0.063 1.0 �2.81 0.029 0.057
Jax, RW 3 - EHex 0.864 1.71 6.48 0.003 0.69 �5.26 0.001 0.004
Jax, RW 7 - EHex 1.42 4.48 28.8 0.004 0.65 �4.98 0.001 0.004

aModel parameter subscripts 1 and 2 refer to the superposed lognormal distributions used to model the nonpartitioning tracer data, where F is the
fractional contribution of the second mode. The NAPL saturation distribution parameters f, mln Ŝ , and sln Ŝ were determined from the partitioning tracer
moments using (19)– (21). Domain-average NAPL saturations, �SN, were determined from measured first moments using (4) and (5), and from the
distributed model parameters using (3) and �SN = f �Sc/(1 + �Sc). Model-determined moments were very close to the measured values (generally within 1%).

Figure 15. Hill AFB, UT, site measured nonpartitioning
and partitioning tracer CDFs with bi-lognormal super-
position and distributed binary model fits, respectively.
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simulations conducted for a range of flow field variances.
Linear variability dampening was observed for slnK

2 /slnt,np
2

and slnS
2 /s2

ln Ŝ
and the degree of dampening was independent

of system variability, with ratios of 0.16 and 0.29 for these
two relationships, respectively.
[82] The laboratory experiments investigated the relative

contributions of nonuniform NAPL distribution, partition-
ing isotherm nonlinearity, and nonequilibrium partitioning
to excess spreading of partitioning tracer BTCs. Partitioning
isotherm nonlinearity appeared to have minimal effect over
a tracer concentration range of approximately 3% to 18% of
aqueous solubility. The effects of nonequilibrium partition-
ing, however, were observed over a broad range of pore
water velocities. Generally, local conditions are closer to
equilibrium at lower velocities and excess spreading due to
nonequilibrium partitioning decreases. However, as veloci-
ties approach zero, the effects of molecular diffusion
become non-negligible. In cases where the NAPL distribu-
tion is nonuniform, tracer concentration gradients may exist
across streamtubes leading to enhanced BTC spreading
from molecular diffusion. Because partitioning rate con-
stants are a function of KN, the velocities required to achieve
local equilibrium will be different for different tracers.
Therefore, when multiple partitioning tracers are used in
systems with nonuniform NAPL distributions, it is probable
that some degree of nonequilibrium effects, on either a local
(i.e., pore) or multiple streamtube scale, can be expected
regardless of velocity.
[83] In the laboratory experiments, the NAPL was rela-

tively homogeneously distributed within the contaminated
zone, but because of nonequilibrium effects the distributed
binary model provided better fits to the data than the
homogeneous binary model. In these cases, the estimated
parameter sln Ŝ is not strictly representative of the standard
deviation of the NAPL saturation distribution, but rather can
be considered as a general measure that accounts for the
spreading of the partitioning tracer BTC. Similarly, for
complex applications such as field experiments, it is sug-
gested that sln Ŝ should be interpreted as a parameter that
incorporates the combined effects of nonuniform NAPL
distribution within the contaminated fraction of the domain,
nonequilibrium and nonlinear partitioning, and correlation
between NAPL saturation and media properties.

[84] It is emphasized that the methodology presented here
requires reliable estimates of tracer BTCmoments. Sources of
error in moments determined by numerical integration of real
data include data gaps, experimental error, and BTC trunca-
tion. These effects become particularly significant when
estimating higher moments. Obtaining complete moment
estimates from model fits to incomplete measured data, as
was done here, is one way to overcome these problems;
however, as with any parameter estimation technique, the
accuracy of the estimatedmodel parameter values is primarily
dependent on the appropriateness of the selected model.
[85] For all cases considered here, estimates of the

domain contaminated fraction f made using both the
homogeneous and distributed binary models were close to
measured or anticipated values. Extension of partitioning
tracer analyses to include higher moments enables the
fraction of the tracer swept volume that is contaminated to
be ascertained. For remediation scenarios, a priori estimates
of the amount of remedial fluids that will be delivered to
portions of the domain that contain no NAPL may allow
more accurate estimates of expected remediation efficiency.
Also, more efficient aquifer remediation system designs
may be promoted in cases where knowledge of f is coupled
with supplemental information (such as lithological logs or
multilevel sampler data) supporting the identification of
specific contaminated regions. Determination of NAPL
saturation distributions within contaminated zones may also
be useful; however, because the models described here are
based on the assumption of instantaneous partitioning, our
ability to estimate parameters describing these distributions
may be restricted until nonequilibrium effects are specifi-
cally considered.
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