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[1] Relevant flow dynamics for the interpretation of passive fluxmeter (PFM)
measurements are investigated by determining the properties of the flow field inside the
PFM and its relationship to the undisturbed ambient fluxes in the aquifer. The flow domain
is treated in two dimensions and consists of a system of concentric annular filter zones
of different radii and hydraulic conductivities. Flow inside the PFM is shown to be
uniform regardless of well configuration. Analytical expressions quantifying flow
convergence are derived for an increasing number of rings, validated against numerical
modeling and used to perform a sensitivity analysis. One of the derived convergence
relationships is embedded in an inverse model to estimate aquifer and well screen
conductivities and ambient groundwater and methyl-tertiary-butyl-ether (MTBE) fluxes in
the Borden Aquifer under controlled flow conditions. Results compare well to
independent estimates when the method of quantifying convergence is consistent with
field conditions.
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1. Introduction

[2] Subsurface contaminant mass flows and fluxes are
increasingly being viewed as critical information needed to
address various elements of aquifer and groundwater reme-
diation. These elements include: source prioritization, risk
prediction, compliance monitoring, remediation endpoint
evaluation, and contaminant attenuation assessment
[Einarson and Mackay, 2001; Schwarz et al., 1998; U.S.
Environmental Protection Agency, 1998; Rao et al., 2002;
Feenstra et al., 1996]. As a result of this increased interest
in subsurface contaminant mass discharges and fluxes,
various quantitative methods have been developed [Borden
et al., 1997; Holder et al., 1998; Schwarz et al. 1998; King
et al., 1999; Teutsch et al., 2000; Kao and Wang, 2001;
Bockelmann et al., 2001]. These methods assume the
groundwater discharge is known or can be calculated from
measured hydraulic gradients and assumed or measured
aquifer hydraulic conductivities. Recently, Hatfield et al.

[2004] introduced and Annable et al. [2005] field tested a
new in situ method for the simultaneous measurement of
both local groundwater specific discharge and local contam-
inant mass flux. This new method uses a downhole device
known as a passive fluxmeter (PFM) which for certain well
designs and under specific site conditions provides direct
measures in the absence of data on the hydraulic gradient or
the mean aquifer conductivity. Otherwise, the depth-
averaged aquifer conductivity and the hydraulic gradient
are needed for interpreting PFM measurements.
[3] The PFM is essentially a self-contained permeable

unit that is inserted into a well or boring exactly fitting its
diameter such that it intercepts groundwater flow but does
not retain it. The interior composition of the PFM is a
matrix of hydrophobic and hydrophilic permeable (e.g.,
granular) sorbents that retain dissolved organic and/or
inorganic contaminants present in the fluid intercepted by
the unit. The sorbent matrix is also impregnated with known
amounts of one or more fluid soluble ‘‘resident tracers’’.
These tracers are leached from the sorbent at rates propor-
tional to fluid flux. After a specified period of exposure to
groundwater flow, the PFM is removed from the monitoring
well. The sorbent is extracted to quantify the mass of all
contaminants intercepted by the PFM and the residual
masses of all resident tracers. The extracted mass of each
contaminant is used to calculate cumulative or time-aver-
aged contaminant-specific mass flux, while residual resident
tracer masses are used to calculate the cumulative or time-
averaged groundwater specific discharge. Depth variations
of both water and contaminant fluxes can be measured in an
aquifer from a single PFM by vertically segmenting the
exposed sorbent packing and analyzing each segment for

1Department of Civil and Coastal Engineering, University of Florida,
Gainesville, Florida, USA.

2Inter-Disciplinary Program in Hydrologic Sciences, University of
Florida, Gainesville, Florida, USA.

3Department of Hydraulic Structures and Water Resources Management,
Graz University of Technology, Graz, Austria.

4Department of Environmental Engineering Sciences, University of
Florida, Gainesville, Florida, USA.

5Department of Earth Sciences, University of Waterloo, Waterloo,
Ontario, Canada.

6School of Civil Engineering, Purdue University, West Lafayette,
Indiana, USA.

Copyright 2007 by the American Geophysical Union.
0043-1397/07/2005WR004718

W04407

WATER RESOURCES RESEARCH, VOL. 43, W04407, doi:10.1029/2005WR004718, 2007

1 of 17



resident tracers and contaminants. This segmenting may be
achieved by the deployment of impermeable packers along
the axis of the PFM, which additionally serve the purpose of
minimizing vertical currents inside the PFM.
[4] In the course of interpreting the measured tracer and

contaminant masses in terms of groundwater and contami-
nant fluxes, it is essential to know (1) the properties of the
flow field inside the PFM in order to infer respective tracer
elution (and contaminant retention) characteristics relating
the detected tracer and contaminant masses to the respective
fluxes inside the PFM, and (2) the relationship between
those fluxes inside the PFM and the ambient fluxes in the
undisturbed aquifer, which are the actual magnitudes of
interest. The latter is generally quantified in a dimensionless
flow convergence factor a (dimensionless). Neglecting the
presence of a well screen and additional filter zones (e.g., a
filter pack) and assuming reversible, linear and instanta-
neous tracer partitioning between water and PFM sorbent,
Hatfield et al. [2004] determined a tracer elution character-
istic as follows:

q1 ¼
2rqRdx

t
ð1Þ

where q1 [L/T] is the water flow rate through the PFM, r [L]
is the radius of the PFM cylinder, q (dimensionless) is the
water content in the sorbent, Rd (dimensionless) is the
retardation of the tracer on the sorbent, and t [T] is
the sampling duration. x is the dimensionless cumulative
volume of water intercepted by the PFM [Hatfield et al.,
2002; Annable et al., 2005] and is obtained iteratively using

x ¼ 1� sin
pWR

2
þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q� �� �2( )1=2

ð2Þ

where WR (dimensionless) is the relative mass of resident
tracer retained in the PFM sorbent at the particular well
depth following exposure to the groundwater flow field for
duration t. Nonlinearities in the desorption of the resident
tracers may as well be taken into account; however, special
consideration must be given to the determination of Rd

[Hatfield et al., 2004].
[5] Equations (1) and (2) are based on the conclusion of

Strack and Haitjema [1981] or Wheatcraft and Winterberg
[1985] that the flow field inside a circular zone of contrast-
ing hydraulic conductivity with respect to an otherwise
homogeneous surrounding flow domain is uniform (provided
a uniform far field). The flow convergence factor a is
simply the ratio of flow inside the PFM to the ambient
groundwater specific discharge. In this case, a equates to a1

(dimensionless) [Strack and Haitjema, 1981; Wheatcraft
and Winterberg, 1985]:

a1 ¼
q1

q0
¼ 2

1þ k0
k1

ð3Þ

where q0 [L/T], is the undisturbed ambient groundwater
flux, and k1 [L/T] and k0 [L/T] are the hydraulic
conductivities of the PFM sorbent and the aquifer,
respectively. Thus equations (1), (2), and (3) serve to

determine the local ambient specific discharge q0 in the
aquifer for a given PFM segment.
[6] The time-averaged convective contaminant mass flux

from a finite sampling duration is calculated from mass of
contaminant intercepted by the PFM using the following
equation [Hatfield et al., 2004]:

JC ¼ 1:67mC

aprbt
ð4Þ

where Jc [M/(L2T)] is the time-averaged ambient convective
contaminant mass flux, mc [M] is the mass of contaminant
sorbed, b [L] is the length of sorptive matrix sampled or the
vertical thickness of aquifer interval interrogated, and t [T]
is the duration of the measurement. Here again, an appropriate
estimate ofa is needed to assess the local ambient contaminant
flux associated with a PFM segment. The term ‘‘local’’ refers
to the scale of groundwater and contaminant flux measure-
ments within a control transect, and is defined here by the
product 2rab representing the cross section of the aquifer
interrogated by one PFM segment of length b.
[7] Because it is the ambient groundwater discharge q0

and contaminant flux Jc we seek to measure, the effects of a
well screen and possible filter rings on the flow field inside
the PFM sorbent and on the flow convergence factor a,
need to be quantified. To the best of our knowledge, flow
distortion in this context has only been investigated for open
wells and not from the perspective of a well containing a
PFM. The most pertinent of such studies are those of Ogilvi
[1958] and Drost et al. [1968] (or, equivalently, Halevy et al.
[1967]), who give expressions for a1 (dimensionless)
representing the flow convergence factor for an open well
(an infinitely permeable PFM); in this case, they quantify
a1 for a screened well and a screened well with a filter
pack, respectively. While these expressions do not specify
the exact properties of the flow field (e.g., streamlines) and
cannot be used to describe flow through PFMs, they do
possess a form which can be used to derive analytical
expressions for the flow convergence factor of a PFM in a
well. For example, it is shown later that equation (3) can be
derived from Ogilvi [1958] and that the a factor for a PFM
in a screened well results from the work of Drost et al.
[1968].
[8] Analytical extensions of the work by Drost et al.

[1968] that quantify a1 for open wells of different designs
could be used to derive expressions for a of PFMs installed
in those wells. Bidaux and Tsang [1991] introduced a
general two-dimensional semianalytical approach in which
the flow field around an open borehole or an impermeable
cylinder is determined given a complex domain of radially
variable hydraulic conductivity. Though the approach pro-
vided numerical flow solutions, it was also true but less
obvious that the semianalytical method could also be used
to generate analytical expressions of a1 for systems more
complex than previously considered. Presumably, Bidaux
and Tsang [1991] could have used the method to derive a
generalized analytical expression for a1 for wells
configured with multiple concentric homogeneous rings of
varied media (i.e., screens, filter packs, and development
zones); however, a personal communication led them to
believe such a solution already existed. Instead, Bidaux and
Tsang [1991] produced an explicit analytical solution for
a1 (not for the entire flow field) for the particular case of
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hydraulic conductivity being an exponential function of
radial distance from the well. However, as recognized by
both authors and later Palmer [1993], this solution was of
limited practical value due to uncertainties in the appropri-
ateness of the adopted conductivity function as well as due
to difficulties in the determination of function parameters. In
more recent studies Palmer [1993] and Kearl [1997] did not
use the semianalytical approach to derive desired expres-
sions for a1 or generate required numerical simulations.
Furthermore, they did not verify the existence of the general
equation for a1 noted by Bidaux and Tsang [1991].
[9] Hence it is first observed that there are methods

(analytical and semianalytical) for investigating the flow
field and determining a1 for open wells; however, analyt-
ical extensions beyond Drost et al. [1968] have not been
found in the literature except for the particular case dis-
cussed by Bidaux and Tsang [1991]. Second, no method can
be identified that allows for a direct and fully analytical
evaluation of the properties of the flow field inside a PFM
installed in a monitoring well or that allows for the
quantification of the pertinent flow convergence factor a.
[10] The present paper develops a flow field analogy that

is used to determine the entire flow field through a system

of an arbitrary number of concentric annular filter zones,
thus providing direct solutions to the issues of interest
discussed above. The flow field analogy relates the case
of a uniform flow field disturbed by an impermeable
(or infinitely permeable) circle and the case of a uniform
flow field disturbed by a circular zone of contrasting
hydraulic conductivity, which is neither zero nor infinite.
The approach is fully analytical and does not require the
adoption of any boundary conditions other than the unifor-
mity of the far field, which, for practical field applications,
is relaxed to the assumption of uniform flow conditions in
the undisturbed aquifer at a local scale around the observa-
tion well (i.e., >10 times the well screen/filter pack radius).
Each PFM sorbent, well screen, additional filter rings and
the aquifer (again at a local scale around the well) are
idealized as homogeneous continua of constant and isotro-
pic hydraulic conductivities (see horizontal cross section in
Figure 1); the flow problem is thus reduced to essentially
horizontal flow in two dimensions. Under the scenario of a
vertically heterogeneous aquifer hydraulic conductivity, the
occurrence of vertical currents inside the monitoring well
constituents is neglected and the system is divided into
separate and independent horizontal layers. This is regarded

Figure 1. Vertical and horizontal cross sections of a possible monitoring well configuration with PFM
installed in a perfectly multilayered aquifer.
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as a reasonable assumption especially for cases of a
screened well without additional filter rings, since both
the well screen and the PFM equipped with impermeable
packers do not allow for significant currents along their
vertical extents [Annable et al., 2005]. The respective
system is thus treated as a perfectly multilayered aquifer
with homogeneous layers of conductivities k0i [L/T] pos-
sessing a hydraulic gradient 8 (dimensionless) independent
of depth and horizontal flow q0i [L/T] parallel to the layers
(see vertical cross section in Figure 1). The results obtained
are subjected to sensitivity analyses regarding uncertain
parameters such as an aquifer or well screen hydraulic
conductivity and they are validated against numerical sim-
ulations using finite difference methods. Finally, one of the
derived convergence relationships is used to develop a
general inverse approach for using PFM data to generate
depth varying estimates of aquifer conductivities, ground-
water specific discharge, and contaminant flux. The method
is tested in a gated flow-controlled system placed in the
Borden Aquifer.

2. Development and Application of the Relevant
Flow Field Analogy

2.1. Uniform Flow Field Disturbed by an
Impermeable Circle

[11] Among other methods that exist to calculate the flow
field around an impermeable circle or toward a simple
borehole in a uniform far field, the method of conformal
mapping leads to an immediate result. The appropriate
mapping function is [e.g., Strack, 1989; Betz, 1964]

W zð Þ ¼ Fþ iY ¼ q0 zþ a2

z

� �
ð5Þ

where the underscoring indicates complex variables. W = F
+ iY is the complex potential (F being the potential function
and Y the stream function; i is the imaginary unit), q0 the
specific discharge of the uniform far field, and z = x + iy =
r � eig the complex Cartesian or polar coordinates in the
physical plane as depicted in Figure 2. a [L] is the radius of
the circle, where a = a is real for the flow around an

impermeable circle, and a = ia is imaginary for the flow
toward a borehole. Equation (5) (with the respective real or
imaginary parameter a) returns the value of the complex
potential W for both cases at any location z outside the
circle. Thus, by finding the real and imaginary parts of W,
the potential and the stream functions are obtained as

F ¼ q0 r þ a2

r

� �
cos g ð6Þ

Y ¼ q0 r � a2

r

� �
sin g ð7Þ

Using these equations, the flow field around an imperme-
able circle results as depicted in Figure 2a, where the
continuous lines represent streamlines (Y = const.) and the
dotted lines represent potential lines (F = const.). By using
a = ia instead of a, the flow field toward a borehole is
obtained, as previously mentioned. Inspection of
equations (6) and (7) shows that both the potential and
the stream function are rational functions of the radius r
and simple cosine and sine functions of the argument g of
the polar coordinates.

2.2. Uniform Flow Field in a Homogeneous
Circular Domain

[12] Knowing the boundary conditions of a homogeneous
circular flow domain, e.g., the potential and/or the stream
function along the circumference, the flow field inside the
circle can be determined by various methods [e.g., Betz,
1964]. For our purposes it is sufficient to consider the
simple case of a uniform flow field inside a circle as
illustrated by the parallel streamlines inside the homoge-
neous circle in Figure 2b. By assigning the value zero to the
streamline at y = 0 it can be seen that the stream function
along the circumference is a function proportional to sing.
Knowing that the set of potential lines inside the circle is
perpendicular to the set of streamlines and assigning the
value zero to the potential line at x = 0, the potential
function along the circumference is seen to behave like
cosg. From this, the inverse conclusion can be drawn that
whenever the stream function and the potential function

Figure 2. Analogy between (a) the flow around an impermeable circle and (b) the flow field with a
circular inhomogeneity of conductivity k1. The potential and stream functions along the circumference r1
in Figures 2a and 2b are identical.
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along a circumference are functions of sing and cosg, then
the flow field inside the homogeneous circle is uniform.

2.3. Uniform Flow Field Disturbed by a
Circular Inhomogeneity of Finite Conductivity
Greater Than Zero

[13] Figure 2b illustrates this flow domain where the
homogeneous circle of radius r1 [L] and hydraulic conduc-
tivity k1 [L/T] from above is located in an aquifer of
conductivity k0 [L/T]. In order to determine the
corresponding flow field, advantage is taken of the final
conclusions of the previous two paragraphs. As depicted in
Figure 2a, it can be seen that the inside of circle of radius r1
can be interchanged with a homogeneous circle of the same
radius but a still unknown conductivity k1 as in Figure 2b.
In both cases y and F show the same qualitative behavior
along the circumference (sine and cosine functions of g).
The quantitative behavior is conditioned by the continuity
of flow between the two cases; this means that k1 has to be
adopted with respect to k0 such that the total flow through
both circles is the same. If this is done, the two circles show
the same qualitative and quantitative behavior of y and F
along their circumferences and, as a consequence, they can be
interchanged without altering the flow field outside the
circles. For Figure 2a it can be stated from equation (7) that
the total flow through the half ringa� r� r1 isya=y(r1,p/2).

Ya ¼ q0r1 1� a2

r21

� �
ð8Þ

For Figure 2b, yb = q1� r1, where the uniform flux q1 [L/T]
inside the circle can be calculated from Darcy’s law as
shown in equation (9). The potential F� k1/k0 (with F from
equation (2)) is used inside the circle to account for the
discontinuity of conductivity while continuity of the
hydraulic head is preserved across the circumference
[Strack, 1989]. Furthermore, Ds = r1 �cosg represents the
length of a streamline from the circumference to x = 0.

Yb ¼
F
Ds

k1

k0
r1 ¼

q0 r1 þ a2

r1

	 

cosa

r1 cosa
k1

k0
r1 ¼ q0r1 1þ a2

r21

� �
k1

k0
ð9Þ

Setting ya = yb imposes continuity and gives the two
equivalent expressions of equations (10) and (11) that
describe the flow field analogy of Figure 2.

k1

k0
¼

1� a

r1

	 
2

1þ a

r1

	 
2
ð10Þ

a

r1

� �2

¼
1� k1

k0

1þ k1
k0

ð11Þ

An intuitive interpretation of equation (11) can be given as
follows: If k1 is equal to k0, then a is zero and the flow
domain is homogeneous. For k1 < k0 the flow field will
partly diverge around the inhomogeneity and a will take a
real value corresponding to the case of flow around an
impermeable circle. As k1 becomes smaller, a approaches r1
and the flow divergence becomes more pronounced.
Conversely, if k1 > k0, the flow will partly converge toward
the inhomogeneity, resulting in an imaginary value for a as
it is the case for flow toward a borehole. Again, as k1

becomes larger, a approaches r1 and the flow convergence
becomes more significant. In other words, the analogy uses
the flow field around an impermeable circle if k1 < k0 (as
illustrated by Figure 2), and it uses the flow field toward an
infinitely permeable circle (borehole) if k1 > k0. However,
since we allow a to take real and imaginary values, these
two cases are automatically included in the following
derivations and do not have to be explicitly distinguished.
[14] In order to illustrate the application of the flow field

analogy to solve the flow field for a given system of
concentric filter rings, it is instructive to first demonstrate
how such a system can be constructed using the analogy.
Imagine a uniform flow field of strength q0 at infinity in a
domain of conductivity k0 around an impermeable circle
(Figure 3a). By applying the analogy of equation (10), the
domain in some circle of radius r1 > a0 [L] can be substituted
by a circular domain of homogeneous conductivity k1a [L/T]
(Figure 3b), keeping the flow field in the surrounding
domain and, consequently, the stream function along the
circumference unchanged. Next, the conductivity of the
surrounding domain is changed from k0 to k1, while k1a is
maintained inside the circle. In order to also maintain the
same flow field inside the circle (i.e., again maintain the
same stream function along its circumference) the magnitude
of the far field has to be changed from q0 to q1 to account for
the different conductivity outside the circle (Figure 3c). In
case k0 and q0 are ambient aquifer parameters, this step may
be considered a temporary transformation that is reversed
later. The resulting system consists of a circular inhomoge-
neity of conductivity k1a in a flow domain of conductivity
k1 and a flux q1 at infinity. Repeated application of the
analogy (equation (11)) now converts the circle of conduc-
tivity k1a into a system of an impermeable circle of radius a1
[L] and a surrounding ring of conductivity k1, which is the
same conductivity as in the surrounding flow domain
(Figure 3d). The resulting flow domain is seen to be
qualitatively equivalent to the initial flow domain of
Figure 3a leading to the possibility of a repeated applica-
tion of equation (10) in order to arrive at the flow domain
of Figure 3e, where, this time, the stream function along
the circumference of radius r2 > a1 [L] remains unaffected.
In summary, it is pointed out once more that the trans-
formations performed above between Figures 3a and 3d do
not alter the stream function along the circumference of
radius r1 while the transformation from Figure 3d to
Figure 3e does not affect the stream function along the
circumference of radius r2. This fact allows for combining
the initial flow field outside the circle of radius r1 in a domain
of conductivity k0 and flux q0 (Figure 3a) with the flow field
inside the ring r2 < r < r1 of conductivity k1 in Figure 3d and
the flow field inside the circle of radius r2 and conductivity
k2 = k2a [L/T] without the composite flow field (i.e., stream
function) to become discontinuous. The flow field obtained
corresponds to the system depicted in Figure 3f and it is seen
that a continued application of equations (10) and (11) on the
domain of Figure 3e allows for the addition of an arbitrary
number of concentric filter rings.

3. Numerical Validation and Sensitivity Analysis

[15] A generalization of the above derivation to an
arbitrary number of rings shows that the flow field in each
filter ring in terms of the stream function can be described
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by equation (7), where the parameters q and a have to be
determined for each ring using the geometric and hydraulic
properties of the composite flow domain. As a consequence
of this observation, it is furthermore seen that a for the flow
field in the center circle is zero leading to the expression of
the stream function of a uniform flow field in equation (7),
which is also confirmed by directly comparing Figures 3e
and 2b. In other words, the flow field in the center circle,
corresponding to the sorbent in the PFM context, is always
uniform, independent of the number of filter rings, their
radii and hydraulic conductivities. However, it is pointed
out that this conclusion relies on the assumption of potential
flow, which may not be accurate in the absence of a porous
medium in the well, potentially resulting in a nonuniform
flow field inside an open well [Sekhar and Sano, 2000]. For
the PFM measurements, this result theoretically validates
the assumption of a uniform flow field inside a PFM by
Hatfield et al. [2004] and hence the applicability of equation (2)

for cases where a well screen and other filter rings are
present. In order to arrive at the flow convergence factors
and the actual flow fields inside the filter rings for different
well configurations, Appendix A gives an example of how
to manipulate a given flow domain using equations (10) and
(11) and how to arrive at the parameters q and a for each
filter ring. In Appendix B the results of Appendix A are
inspected and a general ad hoc formalism is derived to
determine expressions for flow convergence factors for an
arbitrary number of filter rings. Equations (12) and (13)
represent resulting expressions for flow convergence factors
for a PFM in a screened well (a2 (dimensionless)) and in a
screened well with a filter pack (a3 (dimensionless)),
respectively.

a2 ¼
4

1þ k0
k1

	 

1þ k1

k2

	 

þ 1� k0

k1

	 

1� k1

k2

	 

r2
r1

	 
2
ð12Þ

a3 ¼
8

1þ k0
k1

	 

1þ k1

k2

	 

1þ k2

k3

	 

þ 1� k0

k1

	 

1� k1

k2

	 

1þ k2

k3

	 

r2
r1

	 
2

þ 1þ k0
k1

	 

1� k1

k2

	 

1� k2

k3

	 

r3
r2

	 
2

þ 1� k0
k1

	 

1þ k1

k2

	 

1� k2

k3

	 

r3
r1

	 
2

ð13Þ

Figure 3. (a–f) Illustration of repeated application of the flow field analogy to construct a system of
concentric filter rings.
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The indexation of the conductivities starts with ‘‘0’’ in the
aquifer and increases toward the center, while the indexation
of the radii starswith ‘‘1’’ for the largest finite radius (r0!1)
and again increases toward the center of the filter rings as it
is illustrated in Figure 3f. Thus, by letting k2 in equation (12)
and k3 [L/T] in equation (13) approach infinity, Ogilvi’s
[1958] and Drost et al.’s [1968] equations of the flow
convergence factors a21 (dimensionless) for open screened
wells and a31 (dimensionless) for open screened wells with
a filter pack are obtained. In an analogous way, the flow
convergence factor a41 (dimensionless) for an open
screened well with a filter pack and a developed filter zone
in the aquifer as required by Palmer [1993] and Kearl
[1997] is determined by deriving a4 (dimensionless) from
Appendix A or B and letting k4 [L/T] approach infinity.

a41 ¼ 16

D
ð14Þ

where D (dimensionless) is the denominator represented in
Figure B1 using k4 ! 1.
[16] Figure 4 shows the streamlines through a possible

configuration of a PFM installed in a screened well with a
filter pack, where good agreement is seen between the
continuous streamlines resulting from a high-resolution
numerical solution using the finite difference method
[Harbaugh and McDonald, 1996] and the dotted stream-
lines resulting from the application of the flow field analogy.
A systematic comparison of flow fields using both methods
for different well configurations and hydraulic conductivities
ranging over several orders of magnitude was performed
showing the same level of agreement as in Figure 4. This
observation is also confirmed by the fact that the flow

convergence factors computed from both methods present a
maximum deviation at the second decimal, which is
regarded in good agreement considering the restricted
accuracy of numerical methods.
[17] Common observation well configurations include a

well screen and the possible presence of a filter pack. Awell
development zone may be present as a result of the well
construction or a particular well development process.
However, no consistent method is currently available to
infer the radial extent and the hydraulic properties of well
development zones [Bidaux and Tsang, 1991]. As to the
well screen and the filter pack the geometric parameters,
i.e., radii of well screen and filter pack, can be determined
with a relatively high accuracy compared to the hydraulic
conductivities of these components. While the hydraulic
conductivity of the PFM sorbent may as well be inferred
relatively accurately from laboratory experiments, Drost
et al. [1968] present a semianalytical approach to estimate
the hydraulic conductivity of a well screen. Yet, the hy-
draulic conductivities of a well screen and particularly of an
aquifer at a local scale around an observation well are often
subject to uncertainties of up to orders of magnitude. As
long as the filter rings may be regarded as homogeneous in
their respective hydraulic conductivities these uncertainties
do not affect the uniformity of the flow field inside the PFM
sorbent. However, the flow convergence factor is influenced
by uncertainties in the hydraulic conductivities, which
motivates the performance of a sensitivity analysis of
equations (12) and (13) with respect to these critical
parameters.
[18] Propagating, for example, the individual random

errors e(�) of the hydraulic and geometric parameters (which
are assumed to be pair wise uncorrelated) to the error e(a2)

Figure 4. Comparison of streamlines in a borehole with well screen, filter pack, and PFM installed (r1/r3 =
2.5; r2/r3 = 1.5; k3/k0 = 100; k2/k0 = 40; k1/k0 = 200) from numerical simulation (solid lines) and flow field
analogy (dotted lines).
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of the flow convergence factor of a screened monitoring
well leads to

e a2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@a2

@k0

� �2

e k0ð Þ2þ @a2

@k1

� �2

e k1ð Þ2þ @a2

@k2

� �2

e k2ð Þ2þ @a2

@rD

� �2

e rDð Þ2
s

ð15Þ

where the partial derivatives are obtained from equation (12)
and rD = r2/r1 (dimensionless) is used. An analogous
expression can be derived from equation (13) for the
propagated error in a3. Figures 5a and 5b represent
examples of contour plots of a2 and a3, respectively, which

graphically illustrate certain properties of the flow conver-
gence factors.

[19] In general, from the structure of equations (12), (13),
and (14), meeting the condition ki+1 
 ki, (i.e., providing
for an increase in hydraulic conductivity by at least an order
of magnitude for each filter ring going from the aquifer
toward the PFM), maximizes ai and minimizes the partial

Figure 5. Examples of contour plots of (a) a2 for a screened well (r1/r2 = 1.2) and (b) a3 for a screened
well with filter pack for qualitative sensitivity analysis.
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derivatives @ai/@ki in the error propagation. Consequently,
uncertainties in the hydraulic conductivities of the aquifer
and well components present an insignificant effect on the
flow convergence factor and a corresponds to the plateaus
in the contour plots of Figure 5.
[20] In the particular case of a screened monitoring well

and assuming well known aquifer and PFM conductivities
k0 and k2, respectively, @a2/@k1 is minimized by selecting a
screen conductivity k1 =

ffiffiffiffiffiffiffiffiffi
k0k2

p
. In another case where k1

and k2 are known to be reliably determined and k0 is subject
to uncertainties, then k1 
 k0 minimizes @a2/@k0; however,
the additional constraint k2 > k1/10 (qualitatively inferred
from Figure 5a) has to be met in order to assure a sufficient
flux through the PFM (i.e., to avoid an extreme reduction of
a below unity).
[21] Analogous considerations can be made for

equation (13). Figure 5b shows a respective contour plot
of the flow convergence factor for the configuration of
Figure 4 where a filter pack is present and for different well
screen (k2) and filter pack (k1) conductivities. It can be
observed that both k1 and k2 may vary within approximately
one order of magnitude around the peak value of the flow
convergence factor without substantially affecting it. How-
ever, the presence of a filter pack (being the outmost ring)
that is significantly more permeable than the aquifer implies
the facilitation of vertical currents inside the filter pack,
which may partially invalidate the measurement under
heterogeneous conditions, in particular regarding the elab-
oration of a vertical flux profile. In the absence of a filter
pack the outmost ring is represented by the well screen,
whose vertical conductivity is zero (perforations are, in
general, vertically not connected) and the problem of
vertical currents is drastically reduced or eliminated. Imper-
meable packers along the PFM axis as mentioned in the
initial section are used to mitigate vertical currents inside
the PFM in order to approximately maintain two dimen-
sional flow conditions.
[22] Hence, for PFM applications, an optimal observation

well configuration can be identified as a screened well
without a filter pack and a minimum alteration of the aquifer
hydraulic properties in the surrounding of the well due to
the well construction process (no well development). Using
this configuration, equation (12) applies for the flow con-
vergence factor, and meeting the condition k2 
 k1 
 k0
assures a minimum uncertainty of the flow convergence
factor even for significant uncertainties in the determination
of the well screen and aquifer hydraulic conductivities.
However, whenever the goal is to measure a depth averaged
flux rather than a flux profile, then a highly permeable filter
pack can be used to induce a physical averaging of the
fluxes over depth (providing that short-circuiting of flow
around PFM is avoided).

4. Field Application

[23] In practice, the insensitivity condition k2 
 k1 
 k0
will not always be met, in particular when existing moni-
toring wells are used for PFM measurements. As a conse-
quence, aquifer and well screen/filter pack conductivities
need to be determined in order to allow for an adequate
adjustment of the PFM measurements for flow convergence.
[24] In this section, a derived convergence relationship

was applied to interpret ambient specific discharges and

methyl-tertiary-butyl-ether (MTBE) fluxes from PFM
measurements taken in a subsurface controlled flow gate
installed in the Borden aquifer. The focus of the field test
was to assess the efficacy of PFMs for measuring ground-
water discharge and contaminant flux under controlled
conditions. Two types of wells were tested: fully screened
5.1 cm wells and fully screened 5.1 cm wells with 2.5 cm
filter packs. Annable et al. [2005] previously evaluated
results from the field test using a forward model. Their
key assumption was that flow convergence was vertically
uniform in both well types. On the basis of this assumption,
they made direct calculations of convergence factors using
laboratory measured conductivities for aquifer material
collected adjacent to the site and sample well screens. For
flux interpretation, the method can boast the advantage of
not needing a measured hydraulic gradient if aquifer and
screen conductivities are known.
[25] A different approach is taken here, whereby data on

the hydraulic gradient and the depth-averaged aquifer con-
ductivity are combined with unadjusted PFM measurements
of groundwater discharge and then used in an inverse model
to generate depth varying estimates of conductivity for both
the aquifer and the well. On the basis of these conductiv-
ities, depth varying convergence factors are calculated for
final determination of ambient water and contaminant
fluxes. This new approach represents an improvement over
previous forward methods [Annable et al., 2005; Hatfield
et al., 2004] because it is generally adaptable to all well
designs, uses easily acquired data (gradients and depth-
averaged aquifer conductivities) and returns unique esti-
mates of depth varying aquifer conductivities, water fluxes,
and contaminant fluxes. Results of testing this new approach
in the field are compared to those of Annable et al. [2005]
and to independent measurements and calculations.

4.1. Experiment

[26] Recognizing that the field experiment has been
described elsewhere [Annable et al., 2005], only the most
pertinent information was reproduced here for the reader’s
convenience. Field testing was conducted in a subsurface
controlled flow facility (gate 2) located at CFB Borden,
Ontario, Canada [Devlin et al., 2002]. Gate 2 was 24 m long
and 2 ± 0.06 m wide and constructed with sheet pile keyed
into the aquitard �3.0 m below ground surface (in this
paper the estimated standard error follows the ± symbol). At
the closed end of the gate, a fully screened 5.1 cm extraction
well was used to create steady groundwater flow in the
channel. As illustrated in Figure 6, the gate contained three
sampling transects situated 1 m apart. Three multilevel
samplers (MLS) comprised the first transect, each equipped
with 15 sampling ports spaced at 15 cm intervals. The
second transect included three 5.1 cm fully screened PVC
wells (designated FA wells). The third and final transect
contained three 5.1 cm fully screened PVC wells each
constructed with 2.5 cm filter pack (mean grain diameter
2.0 mm) (designated FB wells). Previous experiments left
groundwater in the gate contaminated with MTBE [Barker
et al., 2000].
[27] Both water and MTBE fluxes were measured using

PFMs installed in wells. MTBE concentrations were mea-
sured fromMLS and fromopenFAand FBwells prior to PFM
installation (see Table 1). During the experiment, the average
discharge rate of the extraction well was 203 ± 2.3 mL/min
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which produced a measured hydraulic gradient of 0.016 ±
0.001; this gradient was determined from headmeasurements
taken from 5wells spaced over 22 m. The estimated saturated
thickness of the aquifer was 174 ± 10 cm; this included
139 cm measured below the phreatic surface and 35 cm of
estimated capillary fringe [Xie, 1994]. On the basis of the
above stated gate width, the calculated saturated flow area
was 3.5 ± 0.2 m2. Slug tests were conducted in the FA and FB
wells at end of the experiment which produced an estimated
depth-averaged aquifer conductivity of kO = 5.1 ± 1.0 m/d.

4.2. General Inverse Model for Aquifer and Screen/
Filter Hydraulic Conductivities

[28] One or more PFMs installed in a well generate depth
varying measures of horizontal water and contaminant
fluxes from n discrete vertical intervals along the well axis.
At any arbitrary depth interval i, it can be assumed the local
flow convergence satisfies equation (12) such that ai = a2i.
Hence, at depth interval i the measured specific discharge
through a PFM q2i, is related to the unknown local ambient
groundwater flux q0i as shown in the following equation:

q2i ¼ a2iq0i ¼
4k0i8

1þ k0i
k1i

	 

1þ k1i

k2

	 

þ 1� k0i

k1i

	 

1� k1i

k2

	 

r2
r1

	 
2

8i ¼ 1; 2; . . . ; n ð16Þ

where 8 (dimensionless) is the hydraulic gradient; k2 is the
hydraulic conductivity of the PFM; k0i is the unknown local
conductivity of the aquifer at interval i; k1i is the unknown
local conductivity of the well (screen or screen–filter pack)
at interval i; and the ratio r2/r1 is 0.8 and 0.5 for the FA and
FB wells respectively. Using the same sampling intervals,
the depth-averaged aquifer conductivity k0 is calculated as
follows:

Pn
i¼1

zik0i

Pn
i¼1

zi

¼ k0 ð17Þ

in which zi is the of length sample interval i along the PFM
axis.
[29] The most general formulation of the inverse model is

obtained by combining equations (16) and (17). Assuming k0
is known a priori, (16) and (17) constitute a system of n + 1
equations composed of 2n unknown well and aquifer
conductivities. To solve this system of equations for unique
estimates of k0i and k1i (8i = 1, 2, . . ., n) assumptions are
made to reduce the total number of unknowns to equal the
number of equations. These assumptions vary with well
design.

4.3. Inverse Modeling of Simple Screened Wells

[30] For purposes of analyzing PFM data derived from
simple screened wells (i.e., the FA wells), it is assumed the
aquifer medium and well screen are in intimate contact (i.e.,
no annulus), and that the local well screen conductivity k1i is
a simple linear function of the local aquifer conductivity k0i.

k1i ¼ gk0i 8i ¼ 1; 2; . . . ; nð Þ ð18Þ

and

g � GfA 8i ¼ 1; 2; . . . ; nð Þ ð19Þ

where g is assumed proportional to the fraction of open area
in the well screen fA, and the coefficient G, which accounts
for the increased porosity and permeability of granular
medium adjacent to the wall of the screen [Dudgeon, 1967].
Combining (16)–(18) produces a simplified inverse model.
The resultant system of n + 1 equations, composed of an
equal number of unknowns, can be solved for unique
estimates of g and the local aquifer conductivity at each
depth interval. Local estimates of the screen conductivity
are subsequently estimated through equation (18). Further
inspection of the model shows local flow convergence will
be defined by g alone, wherever the PFM conductivity is
much greater than the local screen conductivity. Moreover,
if k2 
 k1i (8i = 1, 2, . . ., n), flow convergence will be
depth-uniform.
[31] Listed in Table 2, for multiple elevations above the

Borden aquitard, are unadjusted PFM measurements of both
water and MTBE fluxes from FA wells. Also listed are
inverse estimated aquifer and screen conductivities. Pre-
dicted conductivities reflect measured values of 5.1 m/d and
0.016 assigned respectively to parameters k0 and 8 in the
model. A PFM conductivity of 330 m/d [Annable et al.,
2005] and equation (12) are required to reproduce listed
flow convergence factors. Ambient fluxes presented in the
last two columns of Table 2 are calculated from the
unadjusted measurements using theses a values. Table 3
lists gate-averaged values for g and system conductivities

Figure 6. Plan view of the subsurface controlled flow gate
at the Borden site.

Table 1. Depth-Averaged MTBE Concentrations From MLS and

PFM Wellsa

Zone
MLS

16 Aug 2002
MLS

13 Aug 2002
FA Wells

13 Aug 2002
FB Wells

13 Aug 2002

1 2.14 ± 0.73 2.69 ± 0.82 2.36 ± 0.07 4.45 ± 0.13
2 2.16 ± 0.80 3.03 ± 1.03 2.79 ± 0.08 6.94 ± 0.20
3 1.29 ± 0.57 2.82 ± 1.23 2.37 ± 0.07 5.95 ± 0.17

aPlus/minus standard error. Units are mg/L.
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obtained by inverse modeling and resultant ambient water
and MTBE fluxes. For comparison, analogous results are
listed from independent sources/calculations and from a
previous study [Annable et al., 2005]. Results from the

latter are based on a forward modeling analyses of the same
unadjusted PFM data found in Table 2; and they appear in
Table 3 as reported by Annable et al. [2005] or as quantities
adjusted to reflect consistent flux units.

Table 2. PFM Results of Screened Wells Without Filter Pack (FA Wells)

Well

Midpoint
Elevation Above
Aquitard, cm q2,

a cm/d
MTBE J2,

a

g/(m2 d)
k0,
m/d

k1,
b

m/d a
q0,
cm/d

MTBE J0,
g/(m2 d)

FA1 9 5.7 0.03 4.1 0.5 0.88 6.5 0.03
FA1 27 10.2 0.06 7.3 0.9 0.88 11.5 0.07
FA1 47 7.0 0.07 5.0 0.6 0.88 8.0 0.08
FA1 64 7.1 0.03 5.1 0.6 0.88 8.1 0.03
FA1 81 6.5 0.04 4.7 0.6 0.88 7.4 0.05
FA1 98 6.7 0.11 4.8 0.6 0.88 7.6 0.13
FA1 116 14.4 0.44 10.4 1.3 0.88 16.4 0.50
FA1 138 6.9 0.38 4.9 0.6 0.88 7.8 0.43
FA2 8 5.1 0.05 3.7 0.5 0.88 5.8 0.06
FA2 24 6.7 0.05 4.8 0.6 0.88 7.6 0.06
FA2 39 6.0 0.05 4.3 0.5 0.88 6.8 0.06
FA2 54 5.5 0.04 3.9 0.5 0.88 6.2 0.05
FA2 70 5.9 0.04 4.2 0.5 0.88 6.7 0.05
FA2 88 6.0 0.06 4.3 0.5 0.88 6.8 0.07
FA2 106 6.1 0.08 4.4 0.5 0.88 7.0 0.09
FA2 125 10.5 0.78 7.6 1.0 0.88 12.0 0.89
FA2 144 5.7 0.25 4.1 0.5 0.88 6.4 0.28
FA3 9 6.1 0.05 4.4 0.6 0.88 7.0 0.06
FA3 28 13.3 0.03 9.6 1.2 0.88 15.1 0.03
FA3 47 6.5 0.02 4.6 0.6 0.88 7.3 0.02
FA3 65 5.7 0.04 4.1 0.5 0.88 6.5 0.05
FA3 84 6.0 0.04 4.3 0.5 0.88 6.9 0.05
FA3 103 5.9 0.10 4.2 0.5 0.88 6.7 0.11
FA3 122 7.8 0.18 5.6 0.7 0.88 8.9 0.20
FA3 141 4.7 0.42 3.4 0.4 0.88 5.3 0.48
Average 7.1 0.14 5.1 0.6 0.88 8.1 0.16
Coefficient of
variation

0.3 1.3 0.3 0.3 0.0 0.3 1.3

aUnadjusted measure by PFM.
bFrom equation (18) and inverse estimated g = 0.13.

Table 3. Comparison of Fluxes and Conductivities Measured by PFM to Independent Estimates

Annable et al. [2005] This Study

Independent EstimatesaFA Wellsa FB Wellsa FA Wellsa FB Wellsa

kO, m/d 17.0 ± 1.2 17.0 ± 1.2 5.1 ± 0.4 5.1 ± 0.6 5.2 ± 0.4b

kO, m/d 17.0 ± 1.2 17.0 ± 1.2 5.1 ± 0.4 5.1 ± 0.6 5.3 ± 0.4b

kO, m/d 17.0 ± 1.2 17.0 ± 1.2 5.1 ± 0.4 5.1 ± 0.6 4.9 ± 0.2c

kO, m/d 17.0 ± 1.2 17.0 ± 1.2 5.1 ± 0.4 5.1 ± 0.6 5.0 ± 0.2c

kO, m/d 17.0 ± 1.2 17.0 ± 1.2 5.1 ± 0.4 5.1 ± 0.6 5.3 ± 0.5d

k1, m/d 2.0 ± 0.2 0.6 ± 0.1 0.4e � 2.0f

k1, m/d 3.4 ± 0.3 2.6g -

g 0.12 ± 0.01h - 0.13d - 0.12 ± 0.02i

qO, cm/d 8.7 ± 0.7 9.5 ± 0.7 8.1 ± 0.6 8.1 ± 0.9 8.4 ± 0.5j

JO, g/m
2/d 0.17 ± 0.04 - 0.16 ± 0.06 - 0.16 ± 04k

JO, g/m
2/d - 0.42 ± 0.05 - 0.29 ± 0.04 0.31 ± 0.04l

aPlus/minus standard error.
bCore tests [Labaky, 2004].
cSlug tests [Labaky, 2004].
dFrom assuming a flow area of 3.5 ± 0.2 m2, a total measured discharge of 202.6 ± 2.3 mL/min, and a measured hydraulic gradient of 0.016 ± 0.001.
eHarlemann et al. [1963], assuming spherical grains 0.025 cm in diameter occluding well screen slits.
fHarlemann et al. [1963], assuming a well screen free of sediment.
gSingle-valued output from the inverse model.
h
Calculated from ratio of k1 / k1.
iEquation (19), assuming fA = 0.06 ± 0.01 and G = 2.0.
jFrom assuming a flow area of 3.5 ± 0.2 m2 and a total measured discharge of 202.6 ± 2.3 mL/min.
kFrom the calculated specific discharge (8.4 ± 0.5 cm/d) and a depth-averaged MTBE concentration from MLS (16 August 2002).
lFrom the calculated specific discharge (8.4 ± 0.5 cm/d) and a mean MTBE concentration derived from averaging the six open FA and FB well

measurements (13 August 2002) and the three depth-averaged concentrations from MLS (3 August 2002).
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[32] The independent assessments of water and contam-
inant flux, listed in Table 3, were predicated on the above
calculated saturated flow area of 3.5 ± 0.2 m2. Because
PFMs generate direct measures of flux, no assumptions
regarding flow area were needed. Gate-averaged ambient
specific discharge and MTBE flux derived from inverse
modeling were within 5% of independent estimates of 8.4 ±
0.5 cm/d for water and 0.16 ± 04 g/m2/d for MTBE. In
addition, these fluxes were either close or indistinguishable
from those reported by Annable et al. [2005]. Given the
scale of this experiment, the high density of MLS and PFM
sampling (particularly along vertical), and the relative
homogeneity of the Borden aquifer, it was reasonable to
expect agreement between independent and PFM estimates
of MTBE fluxes, if the unadjusted PFM fluxes were
properly processed to give accurate ambient fluxes [Kubert
and Finkel, 2006].
[33] The close agreement between flux results derived

from inverse estimated conductivities and those of Annable
et al. [2005] stood in stark contrast to significant differences
observed for predicted aquifer and screen conductivities.
Inverse estimated aquifer conductivities ranged from 3.4 to
10.4 m/d but gave a depth-averaged value of 5.1 ± 0.4 m/d.
This latter result was a direct consequence of equation (17).
Labaky [2004] reported for the same gate, similar indepen-
dent measures of depth-averaged aquifer conductivity from
core (5.2 ± 0.4 and 5.3 ± 0.4 m/d) and slug tests (4.9 ± 0.2
and 5.0 ± 0.2 m/d). The aquifer conductivity reported by
Annable et al. [2005] was based on laboratory tests and was
three times larger than all other assessments (see Table 3).
Differences in scale of measures taken in a well as opposed
to smaller laboratory samples could explain this discrepancy.
[34] Resultant inverse estimated well screen conductivi-

ties averaged 0.6 ± 0.1 m/d and ranged from 0.4 to 1.3 m/d.
The lower range was comparable with 0.4 m/d calculated
using an empirical formula from Harlemann et al. [1963]
and assuming spherical grains 0.025 cm in diameter
occluded screen slits. An upper limit of 2.0 m/d was
calculated using the same formula but assuming the screen
was free of sediment. Annable et al. [2005] presented a
novel laboratory method for measuring screen conductivi-
ties under ‘‘well-like’’ conditions using the above measured
sample aquifer material. They found conductivities to be
two to three times larger or 2.0 ± 0.2 m/d.
[35] The PFMs used in this study possessed a much

greater conductivity than the aquifer or well screen. For
simple screened wells (i.e., FA wells), this would induce
uniform flow convergence which would depend more on
the conductivity ratio g, and less so on actual aquifer and
well screen conductivities. The inverse model predicted a
uniform flow convergence factor of 0.88 under a g value of
0.13 (see Table 2). Annable et al. [2005] had assumed a
constant flow convergence at the outset of their analysis, and
so it would appear the inverse model confirmed their as-
sumption. Taking the ratio of what they measured for screen
and aquifer conductivities produced a g value of 0.12 ± 0.01
and in turn a comparable convergence factor of 0.83 ± .07
(see Table 3). Thus flux results derived from the inverse
model matched those reported by Annable et al. [2005]
because (1) site conditions supported the assumption that a
was uniform and (2) both methods independently obtained
similar values for g. Had the former not been true, the inverse

model would have estimated different fluxes. To obtain yet
another independent calculation of g that might provide for
broader validation of all methods, equation (19) was used.
Following Dudgeon [1967] and specifying G = 2.0 and fA to
a measured value of 0.06 ± 0.01, the determined value of g
was again approximately 0.12 ± 0.02. This finding would
appear to validate both the inverse model, and a simple
approach of calculating g through laboratory measured
conductivities.
[36] The above analysis shows there are two available

options for evaluating PFM measurements from simple
screened wells. The first option is the inverse model, which
is the most general. This method is the only alternative
when site conditions suggest a is nonuniform and when fA
or g cannot be estimated a priori (i.e., with existing wells).
The model requires unadjusted PFM measures of water flux
and data on the depth-averaged aquifer conductivity and the
hydraulic gradient; but it returns estimates of depth varying
aquifer conductivities, from which depth varying conver-
gence factors and ambient water and contaminant fluxes are
determined.
[37] The second approach, first presented by Annable

et al. [2005], is only valid when site conditions support
uniform flow convergence. This method requires prior
assessments of fA or g (i.e., data generally available as
new wells are installed). A measured hydraulic gradient is
not required, and if fA is known, equation (19) can be used
to estimate g without measured aquifer or screen conduc-
tivities. This simple method returns an estimate of a and
depth varying estimates of ambient water and contaminant
fluxes. The method does not predict depth varying aquifer
conductivities. Such predictions require measured hydraulic
gradients or depth-averaged aquifer conductivities.

4.4. Inverse Modeling of Screened Wells With
Filter Packs

[38] To facilitate analysis of PFM data derived from
screened wells with filter packs (i.e., the FB wells), the
general inverse model is again simplified but under different
assumptions. It is assumed the well screen and the filter
pack are a single filter zone of depth-uniform effective
conductivity k1. Thus k1 = k1i (8i = 1, 2, . . ., n) such that
combining (16) and (17) produces a system of n + 1
equations and again n + 1 unknowns. The resultant system
of equations is solved for the effective well conductivity k1
and again at each depth interval the local aquifer conduc-
tivity k0i. Thus, for stratified aquifers the model predicts
depth varying aquifer conductivities and convergence fac-
tors. Conditions giving exception are homogeneous aquifers
and sites where k1 
 k0i (8i = 1, 2, . . ., n). These conditions
are not relevant here.
[39] Listed in Table 4, for multiple elevations above the

Borden aquitard, are unadjusted PFM measurements of both
water and MTBE fluxes from the FB wells and associated
inverse model results. Modeling produced unique determi-
nations for the effective uniform conductivity of the
screen–filter pack k1, and the local aquifer conductivity at
each depth interval. Estimated local aquifer conductivities
ranged from 2.1 to 13.8 m/d. This was broader than seen
with the FA wells but again averaging 5.1 ± 0.6 m/d (see
Table 3). The predicted screen/filter pack conductivity was
2.6 m/d versus 3.4 m/d estimated by Annable et al. [2005].
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Resultant convergence factors ranged from 0.76 to 2.03 and
gave a depth-averaged value of 1.6 ± 0.1.
[40] Subsequent evaluation of ambient water and con-

taminant fluxes using inverse estimated system conductiv-
ities produced gate-averaged fluxes which were within 5%
of independent estimates for water, 8.4 ± 0.5 cm/d and for
MTBE, 0.31 ± 0.04 g/m2/d. Annable et al. [2005] assumed
flow convergence was constant and applied an a = 1.05;
this produced gate-averaged water and contaminant fluxes
which were 13% and 35% greater than corresponding inde-
pendent estimates (see Table 3). These larger discrepancies
were believed to be a consequence of assuming a constant a
for the FB wells when site conditions did not support this
assumption. This would suggest further that forward model-
ing could dampen variations in estimated fluxes.
[41] Thus inverse modeling is recommended for the

analysis of PFM data generated from screened wells
equipped with filter packs. This requires additional measures
of hydraulic gradients and depth-averaged aquifer conduc-
tivities; however, the outcome is an improved characteriza-
tion of depth-varying aquifer conductivities and fluxes.

5. Summary

[42] The passive fluxmeter (PFM) is a permeable device
installed in a monitoring well to deliver direct and simul-
taneous measures of local cumulative groundwater and
contaminant mass fluxes in porous aquifers. The flow
dynamics of the resulting system (aquifer, observation well,
PFM) has to be determined in order to correctly interpret
measurements by knowing the properties of the flow field
inside the PFM sorbent and knowing the relationship
between the measured fluxes inside the PFM sorbent and
the undisturbed ambient fluxes in the aquifer. Previous
approaches presented by Drost et al. [1968] and Bidaux
and Tsang [1991] are identified as not appropriate for this

purpose. A two dimensional fully analytical approach is
taken to identify a flow field analogy that allows for
determining the properties of a uniform flow field disturbed
by an arbitrary number of concentric annular filter rings of
arbitrary radii and hydraulic conductivities. Application of
this method to the case of a PFM installed in an observation
well consisting of a well screen and possible additional filter
rings leads to the conclusion that the flow field inside the
center circle (PFM sorbent) is always uniform, indepen-
dently of the number of filter rings and their geometric and
hydraulic properties. Furthermore, closed expressions for
flow convergence factors are derived for different well
configurations and an ad hoc formalism is presented to
quickly obtain flow convergence factors for an arbitrary
number of filter rings. The resulting flow fields and flow
convergence factors show good agreement when validated
against numerical solutions. A sensitivity analysis of the
flow convergence factors shows that for increasing hydrau-
lic conductivities (e.g., by an order of magnitude) from the
aquifer toward the PFM sorbent, uncertainties in the flow
convergence factor stemming from uncertainties in the
determination of a well screen or aquifer hydraulic conduc-
tivity may be significantly reduced.
[43] From one of the convergence relationships, two

simple inverse models were derived to facilitate the analysis
of PFM data. Both models required unadjusted PFM mea-
sures of water flux and data on the depth-averaged aquifer
conductivity and the hydraulic gradient. Both models
returned estimates of depth-varying aquifer conductivities,
from which depth-varying convergence factors and ambient
water and contaminant fluxes could be determined. The first
model was suitable for the analysis of PFMs installed
simple screen wells. Under certain conditions the model
would predict depth uniform flow convergence in a strati-
fied aquifer. The second model was formulated for screened

Table 4. PFM Results of Screened Wells With Filter Pack (FB Wells)

Well

Midpoint
Elevation Above
Aquitard, cm q2,

a cm/d
MTBE J2,

a

g/(m2d)
k0,
m/d

k1,
m/d a

q0,
cm/d

MTBE J0,
g/(m2d)

FB1 8 8.7 0.23 2.9 2.6 1.92 4.5 0.12
FB1 24 16.6 0.13 13.8 2.6 0.76 21.9 0.17
FB1 39 13.2 0.34 6.6 2.6 1.27 10.4 0.27
FB1 54 12.3 0.20 5.5 2.6 1.40 8.8 0.14
FB1 70 14.6 0.32 8.7 2.6 1.06 13.8 0.30
FB1 88 7.2 0.58 2.1 2.6 2.13 3.4 0.27
FB1 105 8.5 1.02 2.8 2.6 1.95 4.4 0.52
FB2 9 10.8 0.15 4.3 2.6 1.61 6.7 0.10
FB2 28 12.1 0.21 5.4 2.6 1.42 8.6 0.15
FB2 47 11.5 0.41 4.9 2.6 1.50 7.7 0.27
FB2 65 12.8 0.52 6.1 2.6 1.32 9.7 0.39
FB2 84 14.4 0.53 8.4 2.6 1.09 13.2 0.48
FB2 103 7.9 0.58 2.5 2.6 2.03 3.9 0.28
FB2 122 12.4 1.26 5.7 2.6 1.38 9.0 0.91
FB3 9 12.3 0.12 5.6 2.6 1.39 8.8 0.09
FB3 27 12.5 0.37 5.8 2.6 1.36 9.2 0.27
FB3 47 10.0 0.46 3.7 2.6 1.73 5.8 0.27
FB3 64 10.0 0.42 3.7 2.6 1.72 5.8 0.24
FB3 81 9.8 0.55 3.5 2.6 1.76 5.6 0.31
FB3 98 8.7 0.48 2.9 2.6 1.91 4.6 0.25
FB3 116 8.0 0.72 2.5 2.6 2.01 4.0 0.36
Average 11.2 0.45 5.1 2.6 1.6 8.1 0.29
Coefficient of
Variation

0.2 0.62 0.5 0.0 0.23 0.5 0.62

aUnadjusted measure by PFM.
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wells constructed with filter packs. This model predicted
depth varying flow convergence under typical field con-
ditions; consequently, this knowledge would be critical in
any general assessment of integrated flux or mass flow.
Both inverse models were tested using data from a previous
field study. Furthermore, both models predicted system
conductivity distributions which resulted in subsequent
estimates of ambient water and contaminant fluxes that
were closely comparable to independent determinations.

Appendix A: Application of the Flow Field
Analogy to Determine the Parameters q and a for
Each Filter Ring and the Flow Convergence Factor

[44] Figure A1a represents a cross section of an observa-
tion well consisting of a filter pack and a well screen with a
PFM installed in it. In order to calculate the flow field in the
entire system, the flow field analogy will first be applied in
the reverse way as outlined in section 2, namely successively
from the center toward the aquifer. This converts the system
into a simple impermeable circle in a flow domain of
conductivity k0 with a known solution for the respective flow
field as shown in Figure A1. Successive reversing of these
initial transformations for every ring going back from the

aquifer to the center then provides the solution of the flow
field for each ring (Figure A2). The application of the flow
field analogy (equations (10) and (11)) to the stepwise
transformation of Figure A1 results in the following system
of equations.

a2

r3

� �2

¼
1� k3

k2

1þ k3
k2

ðA1Þ

k2a

k2
¼

1� a2

r2

	 
2

1þ a2

r2

	 
2
ðA2Þ

a1

r2

� �2

¼
1� k2a

k1

1þ k2a
k1

ðA3Þ

k1a

k1
¼

1� a1

r1

	 
2

1þ a1

r1

	 
2
ðA4Þ

a0

r1

� �2

¼
1� k1a

k0

1þ k1a
k0

ðA5Þ

Figure A1. (a–f) Stepwise transformation of flow domain using equations (A1)–(A5) for the derivation
of the flow convergence factor.
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[45] In the flow domain of Figure A1f, equation (7) can
be applied to express the total flow y1 = y(r1, p/2; q0, a0)
[L2/T] through the circle of radius r1 and, subsequently, the
uniform flux q1a in Figure A1e.

q1a ¼
Y1

r1
¼ q0 1�

a0

r1

� �2
" #

¼ q0
2

1þ k0
k1a

ðA6Þ

where equation (A5) is substituted to obtain the last term,
which is seen to be equivalent to the flow convergence
factor a1 of equation (3) corresponding to the flow domain
of Figure A1e. In Figure A2a, k0 from Figure A1e is now
replaced by k1, which requires that q0 be adjusted to q1 to
maintain the same flux q1a inside the circle. Taking
advantage of equation (A6) gives

q1 ¼ q1a
1þ k1

k1a

2
¼ q0

2

1þ k0
k1a

1þ k1
k1a

2
¼ q0

1þ k1
k1a

1þ k0
k1a

ðA7Þ

[46] By combining the flow domains of Figures A1d and
A2a the flow domain of Figure A2b can be generated,
which allows for a repeated application of the previous two
steps resulting in Figure A2c and

q2a ¼
Y2

r2
¼ q1 1�

a1

r2

� �2
" #

¼ q0
4

1þ k0
k1

	 

1þ k1

k2a

	 

þ 1� k0

k1

	 

1� k1

k2a

	 

r2
r1

	 
2
ðA8Þ

where equations (A3), (A4), and (A7) are substituted to
obtain the last term, which corresponds to the flow

convergence factor a2 of equation (12). Furthermore, q2
in Figure A2d is obtained as

q2 ¼ q2a
1þ k2

k2a

2
¼ q1

2

1þ k1
k2a

1þ k2
k2a

2
¼ q1

1þ k2
k2a

1þ k1
k2a

ðA9Þ

and

q3 ¼
Y3

r3
¼ q2 1�

a2

r3

� �2
" #

¼ q0a3 ðA10Þ

where a3 is the flow convergence factor of equation (13),
which is obtained from substituting equations (A1), (A2),
(A3), (A4), (A7), and (A9) into equation (A10). Note that
for the chosen number of filter rings q3 = q3a and k3 = k3a.
Thus this appendix shows how to determine the parameters
q and a for each filter ring in order to compute the
respective flow fields and how to arrive at respective flow
convergence factors for an increasing number of filter rings.

Appendix B: Ad Hoc Formalism to Determine
Flow Convergence Factors for an Arbitrary
Number of Filter Rings

[47] The method applied in Appendix A is general in a
way that the entire flow field can be determined for an
arbitrary number of filter rings. However, as to the mere
determination of flow convergence factors, inspection of
equations (3), (12), and (13) (representing expressions of
flow convergence factors for 0, 1 and 2 filter rings,
respectively) reveals a particular pattern that is followed
in those expressions when a ring is added. This pattern is
identified and used herein to present a formalism represent-

Figure A2. (a–d) Stepwise transformation of the flow domain using equations (A6)–(A10) for the
derivation of the flow convergence factor.
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ing an ad hoc alternative to the application of the flow field
analogy and allowing for a rapid determination of flow
convergence factors for arbitrary numbers of filter rings.
[48] The numerators of equations (3), (12), and (13) are

seen to increase by a factor of 2 each time a ring is added,
indicating that the numerator of a new flow convergence
factor a4 (dimensionless) will be ‘‘16’’, for example. The
denominators are reproduced in Figure B1. The darkly
shaded area can be seen to represent the denominator of
a1, while the intermediate shaded area highlights the addi-
tional terms to obtain the denominator of a2 and the lightly
shaded area the additional terms to obtain the denominator
of a3. The nonshaded area contains the additional terms that
have to be added to the denominator of a3 to obtain the
denominator of a4. The latter terms can be found by
inspection of the changes in the denominators between
a1, a2 and a3 and by applying the same pattern once more.
The positions of the minuses in the terms of the columns 1
to 4 of Figure B1 are unambiguously defined by the fact that
the radius between two adjacent rings has to cancel out if
the conductivities of these rings are the same. For example,
1 � k1/k2 is zero for k1 = k2 and thus all the terms containing
r2 are eliminated from the expression. In the remaining
terms, equal conductivities in adjacent rings have to result in
a factor ‘‘2’’, since elimination of one ring reduces the
numerator to half. For that reason, all the other signs have to
be ‘‘+’’. Thus the matrix of Figure B1 may be expanded to
any number of additional filter rings.

[49] Acknowledgments. This research was supported in part by the
DOC Program of the Austrian Academy of Sciences, the Environmental
Security Technology Certification (ESTCP) program, U.S. Department of
Defense (DOD), project number ER-0114, and the Florida Water Resources
Center under a grant from the U S. Department of Interior (067HQGR0079).

References
Annable, M. D., K. Hatfield, J. Cho, H. Klammler, B. Parker, J. Cherry, and
P. S. C. Rao (2005), Field-scale evaluation of the passive flux meter for
simultaneous measurement of groundwater and contaminant fluxes, En-
viron. Sci. Technol., 39, 7194–7201.

Barker, J. F., B. J. Butler, E. Cox, J. F. Devlin, R. Focht, S. M. Froud, D. J.
Katic, M. McMaster, M. Morkin, and J. Vogan (2000), Sequence Reac-
tive Barriers for Groundwater Remediation, 73 pp., Lewis, Boca Raton,
Fla.

Betz, A. (1964), Konforme Abbildung, Springer, New York.
Bidaux, P., and C. Tsang (1991), Fluid flow patterns around a well bore of
an underground drift with complex skin effects, Water Resour. Res., 27,
2993–3008.

Bockelmann, A., T. Ptak, and G. Teutsch (2001), An analytical quantifica-
tion of mass fluxes and natural attenuation rate constants at a former
gasworks site, J. Contam. Hydrol., 53, 429–453.

Borden, R. C., R. A. Daniel, L. E. LeBrun IV, and C. W. Davis (1997),
Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated
aquifer, Water Resour. Res., 33, 1105–1115.

Devlin, J. F., M. McMaster, and J. F. Barker (2002), Hydrogeologic assess-
ment of in situ natural attenuation in a controlled field experiment, Water
Resour. Res., 38(1), 1002, doi:10.1029/2000WR000148.

Drost, W., D. Klotz, A. Koch, H. Moser, F. Neumaier, and W. Rauert
(1968), Point dilution methods of investigating ground water flow by
means of radioisotopes, Water Resour. Res., 4, 125–146.

Dudgeon, C. R. (1967), Wall effects in permeameters, J. Hydraul. Div. Am.
Soc. Civ. Eng., 93, 137–148.

Einarson, M. D., and D. M. Mackay (2001), Predicting impacts of ground-
water contamination, Environ. Sci. Technol., 35, 66A–73A.

Feenstra, S., J. A. Cherry, and B. L. Parker (1996), Conceptual models
for the behavior of nonaqueous phase liquids (DNAPLs) in the subsur-
face, in Dense Chlorinated Solvents and Other DNAPLs in Groundwater,
edited by J. F. Pankow and J. A. Cherry, pp. 53–88, Waterloo Press,
Portland, Oreg.

Halevy, E., H. Moser, O. Zellhofer, and A. Zuber (1967), Borehole dilution
techniques—A critical review, in Isotopes in Hydrology, pp. 531–563,
IAEA, Vienna, Austria.

Harbaugh, A. W., and M. G. McDonald (1996), User’s documentation for
MODFLOW-96, an update to the U.S. Geological Survey Modular
Finite-Difference Ground-Water Flow Model, U.S. Geol. Surv. Open File
Rep., 96-485.

Harlemann, D. R. E., P. F. Mehlhorn, and R. R. Rumer (1963), Dispersion-
permeability correlation in porous media, J. Hydraul. Div. Am. Soc. Civ.
Eng., 89, 67–85.

Hatfield, K., M. D. Annable, S. Kuhn, P. S. C. Rao, and T. Campbell
(2002), A new method for quantifying contaminant flux at hazardous
waste sites, IAHS Publ., 275, 25–32.

Hatfield, K., M. D. Annable, J. Cho, P. S. C. Rao, and H. Klammler (2004),
A direct passive method for measuring water and contaminant fluxes in
porous media, J. Contam. Hydrol., 75, 155–181.

Holder, T., G. Teutsch, T. Ptak, and R. Schwarz (1998), A new approach for
source zone characterization: The Neckar Valley study, IAHS Publ., 250,
49–55.

Kao, C. M., and Y. S. Wang (2001), Field investigation of natural attenua-
tion and intrinsic biodegradation rates at an underground storage tank
site, Environ. Geol., 40, 622–631.

Kearl, P. M. (1997), Observations of particle movement in a monitoring
well using the colloidal borescope, J. Hydrol., 200, 323–344.

King, M. W. G., J. F. Barker, J. T. Devlin, and B. J. Butler (1999), Migra-
tion and natural fate of a coal tar creosote plume: 2. Mass balance and
biodegradation indicators, J. Contam. Hydrol., 39, 281–307.

Kubert, M., and M. Finkel (2006), Contaminant mass discharge estimation
in groundwater based on multi-level point measurements: A numerical
evaluation of expected errors, J. Contam. Hydrol., 84, 55–80.

Labaky, W. (2004), Theory and testing of a device for measuring point-
scale groundwater velocities, Ph.D. thesis, Dep. of Earth Sci., Univ. of
Waterloo, Ontario, Canada.

Ogilvi, N. A. (1958), An electrolytical method for determining the filtration
velocity of underground waters, Bull. Sci. Technol. Inf., 4, 1009–1012.

Figure B1. Comparison of the denominators of
equations (3), (12), and (13).

16 of 17

W04407 KLAMMLER ET AL.: FLOW FIELDS IN PASSIVE FLUXMETERS W04407



Palmer, C. D. (1993), Borehole dilution tests in the vicinity of an extraction
well, J. Hydrol., 146, 245–266.

Rao, P. S. C., J. W. Jawitz, C. G. Enfield, R. W. Falta, Jr., M. D. Annable,
and A. L. Wood (2002), Technology integration for contaminant site
remediation: Cleanup goals and performance criteria, IAHS Publ., 275,
571–578.

Schwarz, R., T. Ptak, T. Holder, and G. Teutsch (1998), Groundwater risk
assessment at contaminated sites: A new approach for the inversion of
contaminant concentration data measured at pumping wells, IAHS Publ.,
250, 68–71.

Sekhar, G. P., and O. Sano (2000), Viscous flow past a circular/spherical
void in porous media—An application to measurement of the velocity of
groundwater by the single boring method, J. Phys. Soc. Jpn., 69, 2479–
2484.

Strack, O. D. L. (1989), Groundwater Mechanics, Prentice-Hall, Upper
Saddle River, N. J.

Strack, O. D. L., and H. M. Haitjema (1981), Modeling double aquifer flow
using a comprehensive potential and distribution singularities: 2. Solu-
tion for inhomogeneous permeabilities, Water Resour. Res., 17, 1551–
1560.

Teutsch, G., T. Ptak, R. Schwarz, and T. Holder (2000), Ein neues integrales
Verfahren zur Quantifizierung der Grundwasserimmission. Teil I: Bres-
chreibung der Grundlagen, Grundwasser, 4, 170–175.

U.S. Environmental Protection Agency (1998), Technical protocol for eval-
uating natural attenuation of chlorinated solvents in ground water, Rep.
EPA/600/R-98/128, Washington, D. C.

Wheatcraft, S. W., and F. Winterberg (1985), Steady state passing through a
cylinder of permeability different from the surrounding medium, Water
Resour. Res., 21, 1923–1929.

Xie, X. (1994), Solute transport and remediation in the interface zone:
Mathematical modelling and field investigation, Ph.D. thesis, 139 pp.,
Dep. of Earth Sci., Univ. of Waterloo, Ont., Canada.

����������������������������
E. Agyei, K. Hatfield, and H. Klammler, Department of Civil and

Coastal Engineering, University of Florida, Gainesville, FL 32611-6450,
USA. (khh@ce.ufl.edu)

M. D. Annable, Inter-Disciplinary Program in Hydrologic Sciences,
University of Florida, Gainesville, FL 32611-6450, USA.

J. A. Cherry and B. L. Parker, Department of Earth Sciences, University
of Waterloo, Waterloo, ON Canada N2L 3G1.

P. S. C. Rao, School of Civil Engineering, Purdue University, West
Lafayette, IN 47907, USA.

W04407 KLAMMLER ET AL.: FLOW FIELDS IN PASSIVE FLUXMETERS

17 of 17

W04407


