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■ INTRODUCTION
Chlorinated solvents such as trichloroethene (TCE) and
tetrachloroethene (PCE) are widespread groundwater con-
taminants often released as dense nonaqueous phase liquids
(DNAPLs).1,2 These contaminants are difficult to remediate,
particularly their source zones, and represent a significant
environmental liability.3,4 The seriousness of the problems led
the Department of Defense’s Strategic Environmental Research
and Development Program (SERDP) and the Environmental
Security Technology Certification Program (ESTCP) to
convene two workshops 10 and 5 years ago to identify and
prioritize critical research needs in this area.5−7 These needs
included documenting and quantifying the performance of
source zone treatment technologies, improving source delin-
eation and characterization methods, evaluating the benefits of
partial mass removal, developing diagnostic and assessment
tools, reducing long-term monitoring costs, predicting ground-
water plume responses to source treatment, and developing
predictive models and technical guidance materials.

The approach to remediating chlorinated solvent sites has
shifted over the last 30 years, from initially using pump-and-
treat systems to contain and treat plumes and sources, to
deploying more cost-effective plume treatment technologies,
and more recently to remediating sources.2 At the same time,
there has been a growing understanding of the limits to
restoring complex aquifers to concentrations below drinking
water standards (e.g., maximum contaminant levels (MCLs))
and a movement toward a risk reduction paradigm. Several
technologies were developed or modified to treat sources,
including enhanced extraction from the subsurface through
surfactant and/or cosolvent flushing,8 in situ thermal treatment
(ISTT),9 in situ chemical oxidation (ISCO),10 in situ bio-
remediation (ISB), and in situ chemical reduction (ISCR).11

Recently, research has focused on improving existing techno-
logies, understanding their impacts on the subsurface after
treatment, and remediating difficult sites (e.g., fractured
bedrock)12 and persistent contamination, notably low-permeability
zones within sites.13

Beyond identifying high priority research needs, the SERDP
and ESTCP workshops called for an enhanced focus on re-
ducing the uncertainties associated with remediation technol-
ogy application to source zones and the associated management
decisions. These technical uncertainties were believed to lead
directly to inefficient use of limited resources.7 There was a
consensus that a greater ability to define achievable perform-
ance goals and to develop tools and methodologies to assess
performance was critical. There was also a broad consensus that
the suite of emerging treatment technologies being directed
toward source zones, listed above, needed detailed scientific
assessments. It was unlikely that a “new” treatment technology
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would emerge that had not already been considered, but the
community needed a better understanding of the field-scale
performance of the existing technologies and how site
conditions can limit their performance. The community also
needed better methods to optimize and monitor the perform-
ance of source zone treatment, as well as to quantify the
benefits of treatment. This review summarizes the progress in
these areas over the past decade, and is structured to highlight
the important practical lessons learned for improving DNAPL
source zone remediation.

■ RECOGNIZING LIMITATIONS TO TREATMENT
The most important idea to arise from the past decade of re-
search, and the most contentious, has been the recognition that
the scientific community may not currently have the ability to
develop technologies to restore all contaminated groundwater
sites. This remains a source of contention and frustration on all
sides: the scientific community, site owners, impacted
communities and regulatory agencies. All sides would prefer
to implement technologies that will fully restore sites but there
is growing recognition that this is not always possible, at least
not at a reasonable cost. The following sections summarize
lessons learned that expand upon these issues.
Complete Restoration Is Rare, And Credible Metrics

for Partial Source Treatment Are Needed. Although
complete restoration of some DNAPL source zones and even
closure of some chlorinated solvent contaminated sites is pos-
sible, it is more common to find that even aggressive treatment
leaves some residual contamination.7,9,14 While field experience
has demonstrated that impressive reductions in concentrations
and mass are often achieved,15 the typical criteria required for
closure are rarely achieved by any technology.16

A review of sources treated by different technologies indi-
cated the median reduction in total chloroethene concentra-
tions in source zone groundwaters (the most common metric)
ranged from roughly 60−80% for injection-based technologies
(ISB and ISCO), to roughly 95% for ISTT.17 Residual
contamination (residual DNAPL or dissolved contaminants in
less transmissive materials) is a particularly challenging issue for
injection-based technologies, because flow paths often bypass a
significant fraction of the total contamination.18 Residual
contamination is challenging for any technology, since most
source zones have groundwater concentrations that are at least
3−4 orders of magnitude above drinking water criteria.
A common strategy is partial source treatment to a level allowing

subsequent passive management (e.g., natural attenuation). Mea-
suring the performance of aggressive treatment technologies
poses some technical challenges, and useful guidance on monitor-
ing source zone treatments has been developed.19,20 Regulators as
well as practitioners increasingly accept that only partial treatment
is inevitable in many cases, and that relying on mass flux data in
addition to groundwater concentrations may be helpful when
evaluating restoration to achieve a “functional objective” such
as natural attenuation.21 Important tools that can assist in deter-
mining when to transition to natural attenuation include the
Natural Attenuation Software (NAS) model,22,23 as well as the
model REMChlor, and its modification to allow probabilistic
assessments (PREMChlor).24,25

DNAPL Source “Architecture” Is an Important Feature
Affecting Treatment Performance. Source architecture
refers to the spatial distribution of DNAPLs, consisting of
both ganglia and pools (quantified as the pool fraction), as well
as to the distribution between more and less transmissive zones

within the source.26,27 Source architecture features evolve over
time and these transformations will have a significant impact
on how sources respond to remedial efforts (Figure 1).

Consequently, characterizing the architecture is important
because it strongly influences the performance of different
technologies, and impacts how source treatment will affect the
downgradient plume.18,28 For example, the presence of DNAPL
pools largely determines the performance of flushing
technologies and ISB.29 Generally, partial treatment of sources
results in ganglia depletion and rapid reductions in concen-
trations and mass discharge, but concentrations typically reach
a lower asymptote and persist because only the more slowly-
depleted pools remain. Conversely, treatment of ganglia-
dominated sources results in relatively slow reductions in
mass discharge until most of the mass is removed, after which
concentrations and discharge decline rapidly.30−32

Improving source characterization to better describe source
architecture has proven difficult. The pool fraction, for example,
cannot be determined by conventional characterization
methods, and thus this concept has so far had little practical
impact on site management. One approach to better
architecture definition uses an equilibrium streamtube model
that can predict source depletion.28 The parameters for the
model source zone can be determined using partitioning
tracers.33 Another approach being tested is to use push−pull
testing with multiple tracers combined with advanced signal
processing.34

The Distribution of Contaminants between More and
Less Transmissive Zones Is Critical. Many sources have
aged for decades since the original releases, and during that
time contaminants may have migrated and diffused into less
permeable zones.35,36 Back diffusion from these reservoirs can
sustain plumes long after the source has been treated, a phenom-
enon recognized decades ago, though its importance for site

Figure 1. Evolution of a DNAPL source zone and key features of
different stages (modified from ref 16).
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management has become more apparent over time.37 This
insight has led to development of a conceptual model that can
be useful in describing DNAPL sites because it illustrates
potential technology limitations.16 Known as the 14 compart-
ment model, it describes how the contaminant phase and
location (plume versus source) impacts the effectiveness of re-
medial technologies. Back diffusion can limit performance of
any technology based on advective transport (all technologies
except excavation and ISTT), as contaminants in less perme-
able zones may remain untreated. For example, concentrations
rebounded after permanganate injection at a fractured bedrock
site because the reagent did not reach contaminants in the rock
matrix.38 Current research is focused on developing methods to
assess when storage in less permeable regions is significant, and
how to manage these sources.
Plume Features Must Be Considered When Making

Source Treatment Decisions. At many sites, the response of
the downgradient plume to source treatment depends on the
plume features, particularly the contaminant mass within the
plume and its natural attenuation rate.39 The mass stored in
lower permeability regions downgradient of the source can
sustain a plume long after source removal or containment.16

This plume mass affects the magnitude of any back diffusion,
and natural attenuation within the plume is critical if there is
remaining contamination. With appreciable natural attenuation,
any residual contaminants may be effectively contained or
destroyed, greatly decreasing the plume longevity and overall
lifecycle costs.40 Natural attenuation rates can be estimated
using software tools, notably the NAS package.41,42

■ IMPROVING CHARACTERIZATION
DNAPL site characterization has always been constrained by
the difficulties inherent in working in the subsurface, the
temporal and spatial variations in hydrogeological conditions,
and the complex distribution of contaminants between
phases.3,16 Improving source characterizationbefore, during
and after treatmenthas been a long-standing need.7 There is
a growing realization among regulators and practitioners that
the typical level of characterization is often inadequate for
delineating and treating DNAPL source zones.21 For example,
several otherwise well-designed treatment systems have had
limited success due to poor DNAPL delineation.43 Recently,
mass discharge and mass flux methods have been promoted as
useful metrics for source zone remediation, as opposed to re-
lying solely on concentrations or total mass.44,45 Despite recent
improvements in our characterization tools,46 significant
constraints remain and are further discussed in the following
sections.
Source Remediation Is Only As Effective As the

Source Delineation. DNAPLs are notoriously difficult to
locate, and yet the performance of most treatment technologies
depends on reasonably precise delivery of remedial agents to
the contaminants. Even in situ thermal treatment often leaves
residual contamination, because the extent of the source was
not identified during site characterization.43 Several techniques
to improve source delineation have been developed and tested,
including rock crushing and analysis using intact bedrock cores,
membrane interface probes, and chemical sensors combined
with direct-push equipment.46 One notable advance has been
development of an optimized source zone search strategy,47

designed to identify where to initially sample the subsurface to
determine the DNAPL source characteristics and optimize the
investigative strategy.

Sampling Transects at Relatively High Resolution Can
Improve Characterization. Several projects have used
transects of multilevel monitoring wells, sampled before and
after remediation, to measure the source treatment impacts
on contaminant mass discharge and concentrations. Typically,
most discharge occurs over a small fraction of the total
cross-sectional area of the plume, even in unconsolidated
materials.44,48,49 These detailed observations suggest that
remediation can be targeted more effectively if “high re-
solution” sampling is conducted along one or more transects to
define the high-concentration and/or high-flux portions of the
plume.50,51 Transects located immediately downgradient from a
source can reveal locations within the source contributing the
most to overall discharge. In some cases, this approach also has
identified sources not found by using soil borings, drive-point
samples, and conventional monitoring wells.9

Measuring Mass Flux and Discharge Can Improve
Characterization and Monitoring. Mass flux and discharge
measurements have proven useful for prioritizing sites, targeting
remediation efforts, assessing remediation performance, and
determining when to transition from aggressive treatment techno-
logies to more passive, long-term remediation strategies.51,52 Passive
flux meters for unconsolidated and fractured rock systems53 have
allowed better measurements of mass flux and discharge, and
guidance on their use54 and on mass flux data analysis55 has
improved field measurements. Studies of the strengths and
limitations of different flux measurement methods have led to
guidance on methods and data interpretation,52 and on
estimating and managing the uncertainty involved.56

Mass discharge reductions of roughly 1 to 2 orders of
magnitude are common after source remediation.8,49,52 Dis-
charge and flux measurements provide credible assessments of
performance and source status, and thereby lead to better-
informed decisions than relying on concentration data alone,
especially at DNAPL sites.30 Mass discharge can be linked
directly to natural attenuation rates, for example, or to the risks
posed to downgradient receptors.46

■ ENHANCING TREATMENT
As noted previously, there has been a broad consensus over the
past decade that the treatment technologies currently in use are
sufficient for effective DNAPL source zone management.
However, to some extent, the performance of these
technologies is limited by a lack of mechanistic understanding
of the technologies and by an insufficient grasp of their
limitations. Results from the field-scale demonstrations
performed to date indicate that reductions of 90−99% or
more are possible, though reaching MCLs is rare (Figure 2).
These results reflect the difficulties in both characterizing and
treating source zones, but they also suggest that the major
technologies can be further improved. The following sections
provide lessons learned on the major remedial technologies,
including natural attenuation, in situ bioremediation, thermal
treatment, ISCO and ISCR, and the potential for improving
these technologies.

The Natural Attenuation Rates of Source Zones Can
Be Estimated from Field Measurements. The mass of
contaminants in the source, and the mass discharge to the
plume (the source strength), will decline over time due to
dissolution, degradation, and volatilization. Empirical studies
suggest that the rate of chlorinated solvent source attenuation
can be meaningful (e.g., half-lives of a few years).57 This source
zone natural attenuation (SZNA) can be critical when making
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management decisions, particularly at complex sites. Decision
makers need to know the rate at which SZNA is occurring,
what natural processes are responsible, and if SZNA processes
and rates are sustainable.
ISB is Relatively Slow But Can Be Effective and

Economical. Initially ISB was considered a plume treatment
technology only, but it has proven effective for treating some
sources.58 ISB enhances the destruction and removal of con-
taminants through the addition of electron donors to stimulate
reductive dechlorination.59−61 Combinations of ISB with other,
more aggressive, technologies are particularly attractive, as
discussed in later sections.
Despite initial skepticism regarding ISB’s ability to treat

sources, data mining shows that ISB is as effective as other
injection-based technologies, and less expensive.17,62 ISB is
probably not appropriate for sources with significant separate
phase accumulations of DNAPL,62 but it can enhance dis-
solution rates during treatment and thereby reduce ground-
water concentrations after treatment.63 Dissolution enhance-
ment factors of 2−4 have been observed in unconsolidated
materials64 and in fractured bedrock.65 ISB can cause reduc-
tions of 1 to 2 orders of magnitude in chlorinated ethene
concentrations within and downgradient from the source, for
extended periods of time.17 In one field test, a single edible oil
injection produced almost 90% reductions in total molar
concentrations, with evidence that treatment was improving
after 1 year.66

Whether concentrations will rebound eventually is unclear,
but sustained treatment for at least 3−5 years seems common.
Reasons likely include the slow decay of biomass built up
during the active remediation period,67 diffusion of electron
donors into the matrix, and formation of reduced iron minerals
capable of later dechlorination.68,69 One potential improvement
is the use of “partitioning electron donors” (such as n-butyl
acetate) that can partition into the DNAPL phase and then
slowly dissolve at rates similar to the DNAPL constituents,

thereby providing long-term rebound control after a single
injection.70

Bioaugmentation Can Improve Source Zone Reme-
diation by Reducing Lag Times and Costs. Bioaugmenta-
tion is particularly attractive for source zone ISB because the
overall costs are higher than for plumes (especially if recir-
culation is used) and concerns over VC accumulation may be
greater because the concentrations are higher. Early perform-
ance optimization is critical, and bioaugmentation can improve
initial performance even when competent Dehalococcoides are
naturally present and sufficient electron donor is available.71

Bioaugmentation was controversial before the 2000s, but
experience has demonstrated its benefits for source treatment.
This experience has led to models useful for designing bio-
augmentation systems,72 a summary of the state of the practice
of bioaugmentation,73 a review of the lessons learned from field
experience,74 and a bioaugmentation monograph.75

ISB Secondary Effects Persist For Several Years In
Treated Source Zones. ISB can cause undesirable side
effects, notably pH decreases, methane generation and increases
in dissolved metals (especially Fe and As).76 These effects can
persist for several years within the reaction zone, but generally
return to near-baseline conditions within a short distance
downgradient from the source.62 While site-specific concerns
over secondary impacts remain, and should be considered in
design,77 ISB has been rapidly adopted and such impacts have
rarely limited its use.62 Guidance is available to help understand
potential secondary impacts and design appropriate loading
rates to minimize these problems.78

ISB May Be Attractive for Treating Residual Con-
tamination and Low-Permeability Zones. As discussed
earlier, low permeability zones are a critical complicating factor
for chlorinated solvent sites. Treating residual contamination in
low-permeability zones within either the source or the plume
may be both costly and difficult. Such “polishing” may differ
from more typical source zone treatments, since most techno-
logies will treat the most transmissive zones preferentially.
Although electron donor distribution is generally limited to
more transmissive zones, ISB has promise to treat less
accessible regions because some donor materials (vegetable
oil, for example) can persist and diffuse into less permeable
materials over time. ISB is a promising approach to manage the
slow release from less transmissive regions because of the long-
lived effects of ISB treatment.17,67,68 In fact, ISB may be well-
suited for treating less permeable regions, given the low influxes
of oxygen and other electron acceptors and the potential for
electron donors to diffuse into these regions. Finally, coinjec-
tion of shear-thinning fluids like xanthan gum could improve
delivery by increasing the flow of injected fluids into the less
transmissive zones.79

Thermal Treatment Can Be Effective, Though It Is
Expensive and Still Has Technical Limitations. ISTT has
been rapidly developed and adopted as a source remediation tech-
nology. Three primary approaches have been commercialized
steam injection, electrical resistance heating (ERH) and thermal
conductive heating (TCH). ERH and TCH are particularly
attractive for treating sources in less permeable materials or in
fractured media, where other technologies face serious delivery
challenges. In contrast, steam injection relies on advection for
delivery and is more appropriate for higher permeability media;
it may be coupled with ERH or TCH to effectively treat
heterogeneous sites containing both high- and low-permeability
media.

Figure 2. Field-scale performance of the major source zone
remediation technologies (Anaerobic ISB, ISCO with Fenton’s
Reagent or permanganate, and ISTT by electrical resistance heating
or steam injection). Median values, percentiles, and ranges are shown
for each technology. Results are taken from analyzing all chloroethene-
contaminated sites with relevant data in the DNAPL Technology
Evaluation Screening Test database.133 Reductions in total chloroethene
source mass and average concentrations (including daughter products)
within or immediately downgradient of the source are plotted. N =
number of case studies used for each technology and metric.
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Thermal treatment is capable of removing the vast majority
(>99%) of the contaminants from even heavily contaminated
sources, but real-world performance is often less impressive,
and the costs are higher than for most other in situ techno-
logies.9,80,81 However, even when the entire source zone is
treated, a small fraction of the contaminant mass may remain
after treatment, especially at challenging sites (e.g., fractured
bedrock). For example, a recent field demonstration of TCH
for treating fractured bedrock measured extensive but not
complete removal of contaminants (roughly 90%), although
earlier laboratory testing indicated that complete removal is
possible under ideal conditions.82

Key limitations to ISTT’s performance include the cooling
effect caused by locally rapid groundwater fluxes (so that por-
tions of the treated zone remain too cool for effective
treatment), and retention of some fraction of the contaminant
mass in lower-permeability materials.83 Research also has
shown that ISTT is primarily due to steam-distillation
(coboiling of water and NAPL), so there is little destruction
in situ and vapor extraction is required.8,83,84 Finally,
simulations of contaminant removal with different thermal
treatment strategies suggest that ISTT may remove more mass
if two or more separate rounds of heating are employed, and
that the temperature may need to exceed the boiling point of
water in low-permeability materials because the boiling point
increases as the matrix vapor pressure increases.85

Thermal Treatment Can Be Compatible with Other
Technologies. Several combinations of ISTT with other
technologies have been proposed. For example, ISB after ISTT
is feasible, because key microorganisms, including Dehalococ-
coides spp., can quickly recolonize the subsurface.86,87 There
may be a delay, but appropriate microorganisms can be added
or become reestablished naturally. In fact, ISTT may increase
levels of readily available carbon, stimulating subsequent
dechlorination and reducing the competition for electron
donors. Low temperature treatment may be combined with
ISB, because microorganisms can degrade contaminants at
moderate temperatures (<40−45 °C), although little biotic or
abiotic destruction of chloroethenes normally occurs at
temperatures above 50 °C.84 Another possibility is to combine
ISTT with chemical reduction. Addition of reactive amend-
ments such as zerovalent iron (ZVI) during thermal treatment
can increase the rates of contaminant recovery from slowly
desorbing soil fractions.84 Initial results from field testing of
low-energy ERH with ISB and ISCR (ZVI injections) suggest
both combinations can be economically beneficial.88

ISCO Rapidly Destroys Chloroethenes But Has
Important Limitations. Prior to 2000, research and practice
had shown that ISCO was effective for treating dissolved and
sorbed phase organics rapidly. Although the applicability of
ISCO for treating DNAPL source zones was not demonstrated,
there were claims of effective remediation. Catalyzed hydrogen
peroxide (CHP), potassium permanganate, and sodium
persulfate are the most commonly used oxidants, although
others have also been used.89−92 ISCO is attractive because it
provides rapid in situ destruction, but rebound and incomplete
treatment have been consistent problems.17,89,93

ISCO has been marginally successful for chloroethene source
treatment. Key limitations have been delivery difficulties, fre-
quent concentration rebounds following treatment, and rela-
tively high costs.43,63,93 Rebound has been observed in several
studies, and has been attributed to several factors, including
(1) reactants are short-lived and thus do not reach contaminants

in low permeability matrices; (2) natural attenuation processes
may be disrupted by reducing bacterial populations or oxidizing
fermentable carbon; (3) sorbed contaminants may be released
following oxidation of natural organic matter.89 A recent survey
of ISCO applications found no DNAPL sites that had reached
MCLs or closure, with average reductions in maximum con-
centrations of 55% and a median cost of $94/cy.93 Never-
theless, ISCO continues to be used for source treatment,
because it offers rapid mass and concentration reductions, and
does not require aboveground treatment. A recent Technology
Practices Manual has been published to provide guidance on
ISCO applications,89 and guidance on injecting amendments,
including oxidants, has been developed to evaluate key design
variables for site-specific applications.94

Improvements in ISCO May Increase Its Effectiveness
for Source Zone Treatment. Improvements in ISCO
formulations include development of CHP and activated
persulfate.95 Also, techniques have been developed to stabilize
hydrogen peroxide through additions of organic acids (e.g.,
phytate), allowing the oxidant to persist longer and move
further downgradient.96 Activated persulfate has recently
become widely used because it can treat a wide range of
contaminants, and it is relatively stable and nonreactive with
natural organic matter (NOM). However the fundamental
limitations of cost, rebound and delivery remain.89 Fractured
matrices can be particularly difficult to treat effectively with
ISCO.97 Another issue with the most-used oxidant, permanga-
nate, has been the formation of manganese dioxide (MnO2)
precipitates, which can impact the flow regime, and form
“rinds” around DNAPL accumulations.98 Research has
addressed controlling MnO2 particle formation (by adding
stabilizing agents) and improving delivery to lower-permeability
zones (by adding water-soluble polymers).99

ISCO Can Be Used with Other Technologies, But Its
Secondary Effects Must Be Considered.Most ISCO source
zone efforts require multiple treatments,93 so it is particularly
important to understand ISCO’s post-treatment impacts. These
impacts include oxidizing the NOM and native metals and
partially sterilizing the subsurface, but research examining the
coupling of ISCO with bioremediation and surfactant flushing
indicate such impacts are generally minor. In fact, ISCO may
improve later bioremediation by increasing dissolved organic
matter content.100 Testing of sequential treatment using ISCO
initially followed by ISB suggests that this combination could
be less expensive than ISCO alone.101 However, permanganate
treatment increased the overall electron donor demand, and
Mn reducing bacteria used hydrogen to reduce the MnO2
precipitates formed during ISCO, thereby inhibiting later
dechlorination. One notable example of combining ISCO with
other technologies is heat-activated persulfate,102 which can
increase chloroethene removal during thermal treatment by
increasing the accessibility of the contaminants.103 All these
studies indicate that ISCO is compatible with other
technologies, and that its secondary effects can be managed
with careful design.

Injection-Based ISCR Has Significant Limitations As a
Source Treatment Technology. In situ chemical reduction
(ISCR) occurs naturally, as Fe(II) minerals can degrade
chlorinated ethenes without harmful intermediates, but this
process has not been used for source treatment.69 Engineered
ISCR is a proven plume treatment technology, based on the use
of ZVI in permeable barriers,104,105 but the microscale ZVI used
for barriers is difficult to distribute effectively during injections,
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so it is rarely used to treat sources except in combination with
ISB. One approach to using ISCR for source remediation is
subsurface mixing, a process using large (up to 12 ft diameter)
augurs to mix the source zone and simultaneously inject ZVI
and clay.106

Another approach is to inject nanoscale ZVI (nZVI) because
it is highly reactive (due to its high specific surface area) and
should move further in the subsurface than microscale ZVI.107

Rapid reductions in chloroethene concentrations have been
observed in field-scale tests of nZVI injections.108 However, the
particles tend to agglomerate rapidly after injection, clogging
pores and limiting migration. This agglomeration, along with
the rapid evolution of hydrogen after injection, can lead to flow
bypassing the injected material, so research has focused on
improving nZVI delivery. Material costs and environmental
concerns regarding nanoparticles may also limit nZVI use.109

One approach to improve nZVI delivery is to modify the
surface properties of the particles to reduce agglomeration.110

Surface-modified nZVI migrates further through subsurface
materials, based on large-scale column testing,111 but the
amounts required for treating most source zones appear costly
compared to other technologies. Also, the mass of nZVI needed
may cause pore clogging eventually, thereby precluding the
multiple injections needed for effective treatment. Another
approach to increase subsurface transport is to inject oil-in-water/
nZVI emulsions.112 The nZVI can retain reactivity within such
emulsions,113 but again the costs may be high. For both
approaches, it appears that nZVI treatment is more appropriate
for source containment (i.e., injection immediately down-
gradient) than for direct DNAPL treatment.114

ISCR May Be Combined with Other Technologies to
Provide Effective Source Treatment. ISCR has been
proposed for combination with ISTT115 and ISB.116,117 Com-
binations of ZVI with electron donors such as lactate or
emulsified oil are commercially available (the latter is known as
emulsified ZVI, or EZVI). Such products offer the potential for
rapid chemical degradation of the most accessible contaminants
(and other electron acceptors) combined with longer-lasting
bioremediation. A field demonstration of EZVI showed it can
be effective, given adequate delivery.118 The effects of nZVI on
biogeochemistry and indigenous microbial populations appear
minimal, and in fact nZVI additions may result in sustained
reductions in the oxidation−reduction potential that can
enhance subsequent anaerobic biodegradation.119

Surfactants and Cosolvents Have Not Been Adopted
As Stand-Alone Technologies. Surfactant and cosolvent
flushing can be highly effective under controlled laboratory
conditions, but field-scale applications have yielded mixed
results.120−122 Well-controlled field-scale tests of sur-
factant flushing indicate that DNAPL recoveries in the range
of 60−70% can be expected,46,123,124 and that mass recoveries
of greater than 90% are achievable.125−127 However, costs of
active ingredients can be substantial, and as with all flushing-
based technologies, flow bypassing can limit mass recovery at
heterogeneous sites. One potential solution for minimizing flow
bypassing is the use of foams such as those used in enhanced oil
recovery.128 Furthermore, above-ground treatment, recycling
and/or disposal of the extracted effluent waste stream can be
problematic and expensive. For these reasons, recent activities
have focused on coupling surfactants and/or cosolvents with
other technologies (e.g., ISCO), rather than a primary, stand-
alone source treatment technology. Coupling surfactants with
ISB as a polishing step holds promise,129,130 and coupling

surfactants with ISCO to improve oxidant delivery has been
demonstrated and used commercially.131,132

■ SUMMARY

The past decade has seen rapid progress in source zone re-
mediation, and an increasing understanding of the capabilities
and limitations of potential technologies. Research has pro-
duced a large database from well-monitored demonstrations,
more effective models to improve decision-making, and a better
understanding of the physical, chemical, and biological
constraints to achieving complete restoration. This experience
has led to technology selection guidance to help managers
develop reasonable expectations for treatment.133 It also has led
to several publications from researchers funded through
SERDP and ESTCP on source zone treatment (including
technology-specific cost and performance reports), available at
http://www.serdp-estcp.org/Featured-Initiatives/Cleanup-
Initiatives/DNAPL-Source-Zones.
Experience also has shown that different technologies are

needed for different times and locations, and that deliberately
combining technologies may improve overall remedy perform-
ance. Guidance on adaptive management and integrated strate-
gies for DNAPL sites has been developed to help practitioners
select the best combinations and develop realistic objec-
tives.52,134 Such guidance should improve source treatment and
save money, through more cost-efficient characterization and
monitoring, more efficient and appropriate uses of remedial
technologies, and greater consensus on source treatment
decisions.
Challenges remain, however, particularly at complex sites

that are difficult to characterize and where prolonged treatment
and/or multiple technologies have failed to achieve remedial
goals. Many DNAPL sites still cannot be restored to regulatory
criteria within a few years or within a “reasonable time frame”
(often considered roughly 30 years), and therefore will require
long-term management.
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