Difference between revisions of "Main Page"
| Line 29: | Line 29: | ||
<div id="mp-itn" style="padding:0.0em 0.5em;"> | <div id="mp-itn" style="padding:0.0em 0.5em;"> | ||
| − | <slideshow sequence="random" transition="fade" refresh=" | + | <slideshow sequence="random" transition="fade" refresh="5000"> |
[[File:WH Picture1.JPG|thumb|center|x350px|link=Dispersion and Diffusion|Molecular diffusion slowly transports solutes into clay-rich, lower permeability zones]] | [[File:WH Picture1.JPG|thumb|center|x350px|link=Dispersion and Diffusion|Molecular diffusion slowly transports solutes into clay-rich, lower permeability zones]] | ||
| Line 75: | Line 75: | ||
*[[Dispersion and Diffusion]] | *[[Dispersion and Diffusion]] | ||
*[[Metals and Metalloids - Mobility in Groundwater | Mobility of Metals and Metalloids]] | *[[Metals and Metalloids - Mobility in Groundwater | Mobility of Metals and Metalloids]] | ||
| − | |||
*[[pH Buffering in Aquifers]] | *[[pH Buffering in Aquifers]] | ||
*[[Sorption of Organic Contaminants]] | *[[Sorption of Organic Contaminants]] | ||
| Line 92: | Line 91: | ||
**[[Geophysical Methods - Case Studies | Case Studies]] | **[[Geophysical Methods - Case Studies | Case Studies]] | ||
*[[Groundwater Sampling - No-Purge/Passive]] | *[[Groundwater Sampling - No-Purge/Passive]] | ||
| − | |||
*[[Long-Term Monitoring (LTM)|Long-Term Monitoring (LTM)]] | *[[Long-Term Monitoring (LTM)|Long-Term Monitoring (LTM)]] | ||
**[[Long-Term Monitoring (LTM) - Data Analysis | LTM Data Analysis]] | **[[Long-Term Monitoring (LTM) - Data Analysis | LTM Data Analysis]] | ||
| Line 114: | Line 112: | ||
*[[In Situ Treatment of Contaminated Sediments with Activated Carbon]] | *[[In Situ Treatment of Contaminated Sediments with Activated Carbon]] | ||
| + | |||
| + | <u>'''[[Light Non-Aqueous Phase Liquids (LNAPLs)]]'''</u> | ||
| + | |||
| + | *[[LNAPL Conceptual Site Models]] | ||
| + | *[[LNAPL Remediation Technologies]] | ||
| + | *[[NAPL Mobility]] | ||
<u>'''[[Munitions Constituents]]'''</u> | <u>'''[[Munitions Constituents]]'''</u> | ||
| Line 163: | Line 167: | ||
*[[Injection Techniques - Viscosity Modification]] | *[[Injection Techniques - Viscosity Modification]] | ||
*[[Landfarming]] | *[[Landfarming]] | ||
| − | |||
*[[Metal and Metalloids - Remediation | Remediation of Metals and Metalloids]] | *[[Metal and Metalloids - Remediation | Remediation of Metals and Metalloids]] | ||
*[[Remediation Performance Assessment at Chlorinated Solvent Sites]] | *[[Remediation Performance Assessment at Chlorinated Solvent Sites]] | ||
| Line 183: | Line 186: | ||
*[[N-nitrosodimethylamine (NDMA)]] | *[[N-nitrosodimethylamine (NDMA)]] | ||
*[[Perchlorate|Perchlorate]] | *[[Perchlorate|Perchlorate]] | ||
| − | *[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) | + | *[[Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS)]] |
*[[Petroleum Hydrocarbons (PHCs)]] | *[[Petroleum Hydrocarbons (PHCs)]] | ||
*[[Polycyclic Aromatic Hydrocarbons (PAHs)]] | *[[Polycyclic Aromatic Hydrocarbons (PAHs)]] | ||
Revision as of 15:01, 17 September 2020
Peer Reviewed. Accessible. Written By Experts |
Your Environmental Information Gateway |
| The goal of ENVIRO.wiki is to make scientific and engineering research results more accessible to environmental professionals, facilitating the permitting, design and implementation of environmental projects. Articles are written and edited by invited experts (see Contributors) to summarize current knowledge for the target audience on an array of topics, with cross-linked references to reports and technical literature. | See Table of Contents |
Featured article: Sustainable RemediationRemoval of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) from impacted soils is challenging due to the modest volatility and varying properties of PFAS compounds. Thermal treatment technologies have been developed for treatment of semi-volatile compounds such as dioxins, furans, poly-aromatic hydrocarbons and poly-chlorinated biphenyls in soils at temperatures near 325°C. In controlled bench-scale testing, removal of targeted PFAS compounds to concentrations below reporting limits was demonstrated at temperatures of 400°C. Thermal treatment temperatures of at least 400°C and a holding time of 7-10 days are recommended. The energy requirement to treat typical wet soil ranges from 300 to 400 kWh per cubic yard. Extracted vapors have typically been treated using condensation and granular activated charcoal filtration, with thermal and catalytic oxidation as another option which is currently being evaluated for field scale applications.Thermal treatment of PFAS in soils is energy intensive, and the cost of that energy may be prohibitive for some clients. Also, while it often is the least costly option for complete PFAS removal when compared to excavation followed by offsite disposal or destruction, heating soil to treatment temperatures on site or in situ typically takes longer than excavation.
(Full article...) |
Enviro Wiki Highlights |